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Preface

MSST2004, the Twelfth NASA Goddard / Twenty-first IEEE Conference on Mass Storage Systems and
Technologies has as its focus long-term stewardship of globally-distributed storage.  The increasing preva-
lence of e-anything brought about by widespread use of applications based, among others, on the World
Wide Web, has contributed to rapid growth of online data holdings.  A study1 released by the School of
Information Management and Systems at the University of California, Berkeley, estimates that over 5
exabytes of data was created in 2002.  Almost 99 percent of this information originally appeared on mag-
netic media.  The theme for MSST2004 is therefore both timely and appropriate.  There have been many
discussions about rapid technological obsolescence, incompatible formats and inadequate attention to the
permanent preservation of knowledge committed to digital storage.  Tutorial sessions at MSST2004 detail
some of these concerns, and steps being taken to alleviate them.  Over 30 papers deal with topics as diverse
as performance, file systems, and stewardship and preservation.  A number of short papers, extemporane-
ous presentations, and works in progress will detail current and relevant research on the MSST2004 theme.

Our thanks go to the researchers, authors, and the Program Committee for their zeal and energy in putting
together an interesting agenda.

P C Hariharan
Nabil Adam
Publications Chairs

Ben Kobler
Conference Chair

1 http://www.sims.berkeley.edu/research/projects/how-much-info-2003/execsum.htm
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Abstract:

The “Grid” is an emerging infrastructure for coordinating access across autonomous

organizations to distributed, heterogeneous computation and data resources. Data grids

are being built around the world as the next generation data handling systems for sharing,

publishing, and preserving data residing on storage systems located in multiple

administrative domains. A data grid provides logical namespaces for users, digital entities

and storage resources to create persistent identifiers for controlling access, enabling

discovery, and managing wide area latencies. This paper introduces data grids and

describes data grid use cases.  The relevance of data grids to digital libraries and

persistent archives is demonstrated, and research issues in data grids and grid dataflow

management systems are discussed.

1 Introduction

A major challenge in the design of a generic data management system is the set of

multiple requirements imposed by user communities.  The amount of data is growing

exponentially, both in the number of digital entities and in the size of files.  The sources

for data are distributed across multiple sites, with data generated in multiple

administration domains, and on sites only accessible over wide-area networks.  The need

for discovery is becoming more important, with data assembled into collections that can

be browsed.  The need for preservation is becoming more important, both to meet legal

data retention requirements, and to preserve the intellectual capital of organizations.   In

practice, six types of data handling systems are found:

1. Data ingestion systems

2. Data collection creation environments

3. Data sharing environments based on data grids

4. Digital libraries for publication of data

5. Persistent archives for data preservation

6. Data processing pipelines

The goal of a generic data management system is to build software infrastructure that can

meet the requirements of each of these communities.  We will demonstrate that data grids

provide the generic data management abstractions needed to manage distributed data, and

that all of the systems can be built upon common software.
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Data management requires four basic naming conventions (or information categories) for

managing data on distributed resources:

1. Resource naming for access to storage systems across administrative domains.

This is used to implement data storage virtualization.

2. Distinguished user names for identifying persons across administrative domains.

This is used to implement single-sign on security environments.

3. Distinguished file names for identifying files across administrative domains.  This

is used to implement data virtualization.

4. Context attributes for managing state information generated by remote processes.

This is used to implement digital libraries and federate data grids.

A data grid [1,2] provides virtualization mechanisms for resources, users, files, and

metadata.  Each virtualization mechanism implements a location and infrastructure

independent name space that provides persistent identifiers.  The persistent identifiers for

data are organized as a collection hierarchy and called a “logical name space”. In

practice, the logical name spaces are implemented in a separate metadata catalog for each

data grid.  Within a data grid, access to data, management of data, and manipulation of

data is done via commands applied to the logical name space.

To access data located within another data grid (another logical name space), federation

mechanisms are required.  To manage operations on the massive collections that are

assembled, data flow environments are needed.  We illustrate the issues related to data

grid creation, data management, data processing, and data grid federation by examining

how these capabilities are used by each of the six types of data management systems.  We

then present the underlying abstraction mechanisms provided by data grids, and close

with a discussion of current research and development activities in data flow and

federation infrastructure.

2 Data Management Systems

Data management systems provide unifying mechanisms for naming, organizing,

accessing, and manipulating context (administrative, descriptive, and preservation

metadata) about content (digital entities such as files, URLs, SQL command strings,

directories).  Each of the types of data management system approaches focuses on a
different aspect, and provides specific mechanisms for data and metadata manipulation.

2.1 Data ingestion systems

The Real-time Observatories, Applications, and Data management Network (ROADNet)

[3] project manages ingestion of data in real-time from sensors.  The data is assembled

both synchronously and asynchronously from multiple networks into an object ring
buffer (ORB), where it is then registered into a data grid.  Multiple object ring buffers are

federated into a Virtual Object Ring Buffer (VORB) to support discovery and attribute-
based queries.  Typical operations are the retrieval of the last ten observations, the

tracking of observations about a particular seismic event, and the migration of data from
the ORB into a remote storage system.
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A second type of data ingestion system is a grid portal, which manages interactions with
jobs executing in a distributed environment.  The portal provides access to collections for

input data, and stores output results back into a collection.  A grid portal uses the Grid
Security Infrastructure to manage inter-realm authentication between compute and

storage sites.

2.2 Data collection creation environments

Scientific disciplines are assembling data collections that represent the significant digital

holdings within their domain.  Each community is organizing the material into a coherent

collection that supports uniform discovery semantics, uniform data models and data

formats, and an assured quality.  The National Virtual Observatory (NVO) [4] is hosting

multiple sky survey image collections.  Each collection is registered into a logical name

space to provide a uniform naming convention, and standard metadata attributes are used

to describe the sky coverage of each image, the filter that was used during observation,

the date the image was taken, etc.  Collection formation is facilitated by the ability to

register the descriptive metadata attributes onto a logical name space.  The logical name

space serves as the key for correlating the context with each image.

Other examples include: GAMESS [5], computational chemistry data collections of

simulation output; and the CEED: Caveat Emptor Ecological Data Repository.  Both

projects are assembling collections of data for their respective communities.

2.3 Data sharing environments based on data grids

Scientific disciplines promote the sharing of data.  While collections are used to organize
the content, data grids are used to manage content that is distributed across multiple sites.

The data grid technology provides the logical name space for registering files, the inter-
realm authentication mechanisms, the latency management mechanisms, and support for

high-speed parallel data transfers.  An example is the Joint Center for Structural
Genomics data grid which generates crystallographic data at the Stanford Linear

Accelerator and pushes the data to SDSC for storage in an archive and analysis of protein
structures.  The Particle Physics Data Grid [6] federates collections housed at Stanford

and Lyon, France for the BaBar high energy physics experiment [7].  The Biomedical
Informatics Research Network (BIRN) [8] is using a data grid to share data from multiple

Magnetic Resonance Imaging laboratories.  Each project implements access controls that
are applied on the distributed data by the data grid, independently of the underlying

storage resource.

2.4 Digital libraries for publication of data

An emerging initiative within digital libraries is support for standard digital reference sets
that can be used by an entire community.  The standard digital reference sets are created

from observational data collections, or from simulations, and are housed within the
digital library.  Curation methods are applied to assure data quality.  Discovery

mechanisms are supported for attribute-based query.  An example is the HyperAtlas
catalog that is being created for the 2MASS and DPOSS astronomy sky surveys

[4,19,20].  The catalog projects each image to a standard reference frame, organizes the
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projections into an atlas of the sky, and supports discovery through existing sky catalogs
of stars and galaxies.

The organizations participating in a collaboration may share their digital entities using a

collective logical view. Multiple logical views could be created for the same set of

distributed digital entities. These logical views may be based on different taxonomies or

business rules that help in the categorization of the data. The organizations, apart from

sharing the physical data, could also share the logical views as publication mechanisms.

The library community applies six data management processes to digital entities:

1. Collection building to organize digital entities for access

2. Content management to store each digital image

3. Context management to define descriptive metadata

4. Curation processes to validate the quality of the collection

5. Closure analyses to assert completeness of the collection and the ability to

manipulate digital entities within the collection

6. Consistency processes to assure that the context is updated correctly when

operations are performed on the content.

2.5 Persistent archives for data preservation

The preservation community manages archival collections for time periods that are much

longer that the lifetimes of the underlying infrastructure [9,10,11,25,26,27].  The

principal concern is the preservation of the authenticity of the data, expressed as an

archival context associated with each digital entity, and the management of technology

evolution.  As new more cost effective storage repositories become available, and as new

encoding formats appear for data and metadata, the archival collection is migrated to the

new standard.  This requires the ability to make replicas of data on new platforms,

provide an access abstraction to support new access mechanisms that appear over time,

and migrate digital entities to new encoding formats or emulate old presentation

applications.  Example projects include a persistent archive for the National Science

Digital Library, and a persistent archive prototype for the National Archives and Records

Administration [12.13].  Both projects manage data that is stored at multiple sites,

replicate data onto different types of storage repositories, and support both archival and
digital library interfaces.

The preservation community applies their own standard processes to data:

1. Appraisal – the decision for whether a digital entity is worth preserving
2. Accession – the controlled process under which digital entities are brought into

the preservation environment
3. Arrangement – the association of digital entities with a record group or record

series
4. Description – the creation of an archival context specifying provenance

information
5. Preservation – the creation of an archival form for each digital entity and storage

6. Access – the support for discovery services
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2.6 Data Processing Pipelines

The organization of collections, registration of data into a data grid, curation of data for
ingestion into a digital library, and preservation of data through application of archival

processes, all need the ability to apply data processing pipelines.  The application of
processes is a fundamental operation needed to automate data management tasks.

Scientific disciplines also apply data processing pipelines to convert sensor data to a
standard representation, apply calibrations, and create derived data products.  Examples

are the Alliance for Cell Signaling digital library, which applies standard data analysis
techniques to interpret each cell array, and the NASA Earth Observing Satellite system

that generates derived data products from satellite observations.

Data processing pipelines are also used to support knowledge generation.  The steps are:
1. Apply semantic labels to features detected within a digital entity

2. Organize detected features for related digital entities within a collection
3. Identify common relationships (structural, temporal, logical, functional) between

detected features
4. Correlate identified relationships to physical laws

3 Generic requirements

Multiple papers that summarize the requirements of end-to-end applications have been

generated in the Global Grid Forum [14].  They range from descriptions of the remote

operations that are needed to manage large collections, to the abstraction mechanisms

that are needed for preservation.  The capabilities can be separated into four main

categories: Context management, data management, access mechanisms, and federation

mechanisms.  The capabilities are provided by data grids:

Context management mechanisms

• Global persistent identifiers for naming files.

• Organization of context as collection hierarchy

• Support for administrative metadata to describe the location and ownership of files

• Support for descriptive metadata to support discovery through query mechanisms

• Support for browsing and queries on metadata

• Information repository abstraction for managing collections in databases

Data management mechanisms

• Storage repository abstraction for interacting with multiple types of storage systems

• Support for the registration of files into the logical name space

• Inter-realm authentication system for secure access to remote storage systems

• Support for replication of files between sites

• Support for caching onto a local storage system and for accessing files in an archive

• Support for aggregating files into containers

Access mechanisms

• Standard access mechanisms: Web browsers, Unix shell commands, Windows
browsers, Python scripts, Java, C library calls, Linux I/O redirection, WSDL, etc.

• Access controls and audit trails to control and track data usage
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• Support for the execution of remote operations for data sub-setting, metadata
extraction, indexing, third-party data movement, etc.

• Support for bulk data transfer of files, bulk metadata transfer, and parallel I/O

Federation mechanisms

• Cross-registration of users between data grids

• Cross-registration of storage resources data grids

• Cross-registration of files between data grids

• Cross-registration of context between data grids

Data Grids provide transparency and abstraction mechanisms that enable applications to

access and manage data as if they were local to their home system. Data grids are

implemented as federated client-server middleware that use collections to organize

distributed data.

4 Data Grid Implementation

An example of a data grid is the Storage Resource Broker (SRB) from the San Diego

Supercomputer Center [15,16,17].  The SRB manages context (administrative,
descriptive, and preservation metadata) about content (digital entities such as files, URLs,

SQL command strings, directories).  The content may be distributed across multiple types
of storage systems across independent administration domains. By separating the context

management from the content management, the SRB easily provides a means for
managing, querying, accessing, and preserving data in a distributed data grid framework.

Logical name spaces describe storage systems, digital file objects, users, and collections.
Context is mapped to the logical name spaces to manage replicas of data, authenticate

users, control access to documents and collections, and audit accesses. The SRB manages
the context in a Meta data Catalog (MCAT)  [18], organized as a collection hierarchy.

The SRB provides facilities to associate user-defined metadata, both free-form attribute-
based metadata and schema-based metadata at the collection and object level and query

them for access and semantic discovery.  The SRB supports queries on descriptive
attributes [21]. The SRB provides specific features needed to implement digital libraries,

persistent archive systems [10,11,12,13] and data management systems [22,23,24].   

The Storage Resource Broker (SRB) in earlier versions used a centralized MCAT [18] for
storing system-level and application-level metadata. Though essential for consistent

operations, the centralized MCAT poses a problem. It can be considered a single-point of
failure as well as a potential bottleneck for performance. Moreover, when users are

widely distributed, users remote from the MCAT may see latency unacceptable for
interactive data access.

In order to mitigate these problems, the SRB architecture has been extended to a

federated environment, called zoneSRB. The ZoneSRB architecture provides a means for
multiple context catalogs to interact with each other on a peer-to-peer basis and

synchronize their data and metadata.  Each zoneSRB system can be autonomous,
geographically distant, and administer a set of users, resources and data that may or may
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not be shared by another zoneSRB. Each zoneSRB has its own MCAT for providing the
same level of features and facilities as done by the older SRB system.

The main advantage of the zoneSRB system is that now, there is no single point of

failure, as multiple MCATs can be federated into a multi-zoneSRB system.  Users can be
distributed across the zones to improve quality of performance and minimize access

latencies to geographically distant metadata catalogs.  The multiple zoneSRBs can share
metadata and data based on policies established by the collaborating administrators. The

level of collaboration can be varied to specify how much of the information is shared,
partitioned or overlapped, and whether the interactions are controlled by the users or the

zone administrators.

More information about the SRB can be found in [15,16,17,18].  In a nutshell, the SRB

provides all of the capabilities listed as generic requirements. The SRB provides

interoperability mechanisms that map users, datasets, collections, resources and methods

to global namespaces. It also provides abstractions for data management functionality

such as file creation, access, authorization, user authentication, replication and

versioning, and provides a means to associate metadata and annotation with data objects

and collections of data objects. Descriptive metadata is used for searching at the semantic

level and discovery of relevant data objects using the attribute-based discovery paradigm.

Figure 1 provides details about the modules that form the core of the SRB services.

Figure 1. Storage Resource Broker
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The SRB server is built using three layers. The top-layer is a set of server access APIs

written in C and Java that are used to provide multiple client interfaces. The middle layer
provides the intelligence for collection-based management, federation of data grids, data

movement, authentication, and authorization. The bottom-layer is a set of storage drivers
and MCAT database drivers that are used to connect to diverse resources.  These drivers

have a well-defined and published API such that a new storage resource or data server
system can be integrated easily into the SRB system. For example, custom-based

interfaces to special drivers such as the Atlas Data Store System and CERN’s CASTOR
storage systems were written in just a few days. The SRB drivers for storage include,

HPSS, ADSM, Unix/Linux /Mac OSX and NT file systems, and for databases includes
DB2, Oracle, Postgres, Informix, and Sybase.

The middle layer of the SRB system supports the federation consistency and control

mechanisms needed to integrate multiple data grids and encapsulates much of the
intelligence needed to manage a data grid. This layer interacts with the MCAT to access

the context needed to control each type of data service.

The data grid technology based on the SRB that is in production use at SDSC at this date

manages over 90 Terabytes of data comprising over 16 million files.

5 Data Grid Federation

The specification of appropriate federation mechanisms is still a research project.  The

federation of multiple data grids basically imposes constraints on the cross-registration of

users, resources, files, and context.  The constraints may be invoked by either a user or

automatically implemented by the data management system.  The constraints may be set

for either no cross-registration, partial cross-registration, or complete cross-registration.

It is possible to identify over 1500 possible federation approaches by varying the type of

cross-registration constraints that are imposed.  In practice, ten of the approaches are

either in active use or proposed for use within scientific projects.  Each data grid is called

a zone, with its own metadata catalog managing the logical name spaces for its users,

resources, files, and context.  The approaches include:

5.1 Occasional Interchange

This is the simplest model in which two or more zones operate autonomously with very

little exchange of data or metadata. The two zones exchange only user-ids for those users
who need access across zones. Most of the users stay in their own zone accessing
resources and data that are managed by their zone MCAT. Inter-zone users will

occasionally cross zones, browsing collections, querying metadata and accessing files for
which they have read permission. These users can store data in remote zones if needed

but these objects are only accessible to users in the other zones. This model provides the
greatest degree of autonomy and control. The cross-zone user registration is done not for

every user from a zone but only for selected users. The local SRB administrator controls
who is given access to the local SRB system and can restrict these users from creating

files in the local SRB resources. (NPACI driven federation model [28])
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5.2 Replicated Catalog

In this model, even though there are multiple MCATs managing independent zones, the

overall system behaves as though it were a single zone with replicated MCATs. Metadata
about the tokens being used, users, resources, collections, containers and data objects are

all synchronized between all MCATs. Hence, the view from every zone is the same.  An
object created in a zone is registered as an object in all other sister zones and any

associated metadata is also replicated. This model provides a completely replicated
system that has a high degree of fault-tolerance for MCAT failures. The user can still

access data even if their local MCAT becomes non-functional. The degree of
synchronization, though very high in principle, in practice is limited.  The MCATs may

be out of synchronization on newly created data and metadata. The periodicity of
synchronization is decided by the cooperating administrators and can be as long as days if

the systems change slowly. An important point to note is that because of these delayed
synchronizations, one might have occasional logical name clashes. For example, a data

object with the same name and in the same collection might be created in two zones
almost at the same time. Because of delayed synchronization both will be allowed in their

respective zones. But when the synchronization is attempted, the system will see a clash
when registering across zones. The resolution of this has to be done by mutual policies

set by the cooperating administrators. In order to avoid such clashes, policies can be
instituted with clear lines of partitioning about where one can create a new file in a

collection. (NARA federation model [12])

5.3 Resource Interaction

In this model resources are shared by more than one zone and hence they can be used for

replicating data. This model is useful if the zones are electronically distant, but want to
make it easier for users in the sister zone to access data that might be of mutual interest.

A user in a zone replicates data into the shared resources (either using synchronous
replication or asynchronous replication as done in a single zone).  Then the metadata of

these replicated objects is synchronized across the zones. User names need not be
completely synchronized. (BIRN federation model [8])

5.4 Replicated Data Zones

In this model two or more zones work independently but maintain the same data across
zones, i.e., they replicate data and related metadata across zones. In this case, the zones

are truly autonomous and do not allow users to cross zones. In fact, user lists and
resources are not shared across zones. But data stored in one zone is copied into another

zone along with related metadata, by a user who has accounts in the sister zones. This
method is very useful when two zones are operating across a wide-area network has to

share data and the network delay in accessing data across the zones has to be reduced.
(BaBar federation model [7])

5.5 Master-Slave Zones

This is a variation of the 'Replicated Data Zones' model in which new data is created at a
Master site and the slave sites synchronize with the master site. The user list and resource

list are distinct across zones. The data created at the master are copied over to the slave
zone. The slave zone can create additional derived objects and metadata but these may
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not be shared back to the Master Zone. (PDB federation model)

5.6 Snow-Flake Zones

This is a variation of the 'Master-Slave Zones' model,  One can view this as a hierarchical

model, where a Master Zone creates the data that is copied to the slave zones, whose data
in turn gets copied into other slave zones lower in the hierarchy. Each level of the

hierarchy can create new derived products of data and metadata, can have their own
client base, and can choose to propagate only a subset of their holdings to their slave

zones. (CMS federation model [23]).

5.7 User and Data Replica Zones

This is another variation of the 'Replicated Data Zones' where not just the data get

replicated but also user names are exchanged. This model allows users to access data in
any zone. This model can be used for wide-area enterprises where users travel across

zones and would like to access data from their current locations for improved
performance. (Web cache federation model)

5.8 Nomadic Zones - SRB in a Box

In this model, a user might have a small zone on a laptop or other desktop systems that
are not always connected to other zones. The user during his times of non-connectedness

can create new data and metadata. The user on connecting to the parent zone will then
synchronize and exchange new data and metadata across the user-zone and the parent

zone.  This model is useful for users who have their own zones on laptops.  It is also
useful for zones that are created for ships and nomadic scientists in the field who

periodically synchronize with a parent zone. (SIOExplorer federation model)

5.9 Free-floating Zones – myZone

This is a variation of the 'Nomadic Zone' model having multiple stand-alone zones but no

parent zone. These zones can be considered peers and possibly have very few users and
resources. These zones can be seen as isolated systems running by themselves (like a PC)

without any interaction with other zones, but with a slight difference. These zones
occasionally "talk" to each other and exchange data and collections. This is similar to

what happens when we exchange files using zip drives or CDs or as occasional network
neighbors. This system has a good level of autonomy and isolation with controlled data

sharing. (Peer-to-peer or Napster federation model)

5.10 Archival Zone, BackUp Zone

In this model, there can be multiple zones with an additional zone called the archive. The

main purpose of this is to create an archive of the holdings of the first set of zones.  Each
zone in the first set can designate the collections that need to be archived. This provides

for backup copies for zones which by themselves might be fully running on spinning
disk. (SDSC backup federation model, NASA backup federation model [29])
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6 Grid Dataflow

A second research area is support for data flow environments, in which state information

is kept about the processing steps that have been applied to each digital entity in a work

set.

6.1 Need for peer-to-peer Data Grid Dataflows

A dataflow executes multiple tasks.  Each task might require: different resources; access

to different data collections for input; storage of output products onto physically

distributed resources within a data grid; and disparate services that might be in the form

of web/grid services or simply executables of an application. The dataflow is described in

a data grid language.  The dataflow is executed through a dataflow engine.  Each

dataflow engine needs to be able to communicate with other dataflow engines in a peer-

to-peer federation for coordination.  This allows dynamic distributed execution, without

having to specify a pre-planned schedule.

Placement scheduling is still required to find the right location for execution of each task.

In the data grid, the tasks in the dataflow could be executed in any of distributed

resources within the participating administrative domains. In general the following

factors must be considered for dataflow scheduling:

• Appropriateness of a given resource for a particular task: Is there enough

disk space to hold result sets, and is the compute resource powerful enough to

execute the task within a desired time?  Are the tasks sufficiently small that they

could be processed by less powerful systems?

• Management of data movement: How can the amount of data moved for both

input and output files and for the executable be minimized?

• Co-location of dependent tasks:  How can tasks be co-located on the same

administrative domain or resource to minimize coordination messages that have to

be sent across the network?

6.2 Grid Dataflow System Requirements

Collections of data sets can be manipulated in a Data Grid dataflow. Instead of creating a

separate dataflow for each file, state information can be maintained about the aggregated

set of files for which processes have been applied.  Related issues are:

• Management of processing state:  (e.g.) What information needs to be

maintained about each process?

• Control procedures:  (e.g.) What types of control mechanisms are needed to

support loops over collections?

• Dynamic status queries:  (e.g.) Can a process detect the state of completion of

other processes through knowledge of the placement schedule?

6.3 Data Grid Language

The SDSC Matrix project [33], funded by the NSF Grid Physics Network (GriPhyN)

[30], NIH Biomedical Informatics Research Network (BIRN) [8] and NSF Southern

California Earthquake Center (SCEC) [31], has developed a data grid language to

describe grid dataflow. Just like SQL (Structured Query Language) is used to interact

with the databases, the Data Grid Language (DGL) is used to interact with the data grids
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and dataflow environments. DGL is XML-based and uses a standard schema that

describes:

• Control-based dataflow structures.  These include sequential, parallel, and

aggregated process execution.

• Context-based dataflow structures.  These include barriers (synchronization points

or milestones), “For loops” (iteration over task sets) and “For Each loops”

(iteration over collection of files).

• Event Condition Alternate Action (ECA) rules.  Any event in the workflow

engine like completion or start of a task could be used to trigger a condition to be

evaluated dynamically and execute any of the alternate dataflow actions. The

conditions could be described using XQuery or any other language that would be

understood by the dataflow engine. This allows other useful or simple workflow

query languages to be used along with DGL.

• Variables.  Both global variables and local variables can be managed for the

dataflow.  The variables are related to the dataflow, rather than an individual file

that is manipulated by the dataflow.  Hierarchical scoping is used to restrict the

use of the dataflow variables to aggregates of processes.

• Discovery.  Queries from external grid processes are supported for determining

the completion status of a process and the state of variables.

A simple example of the use of dataflow systems is the management of the ingestion of a

collection into a data grid. The SCEC project implemented the collection ingestion as a

dataflow using the data grid language and executed the dataflow using a SDSC Matrix

Grid workflow engine.

6.4 SDSC Matrix Architecture

The architecture of the SDSC Matrix dataflow engine is shown in Figure 2. The

components are layered on top of agents that can execute either SRB or other processes

(SDSC Data Management Cyberinfrastructure, java classes, WSDL services and other

executables).  The matrix dataflow engine tracks the dataflow execution. The dataflow

execution state can be queried by other applications or other dataflows that are executed

by the matrix engine. Persistence of the dataflow execution state is held in memory and

exported to a relational database.

Clients send DGL dataflow requests as SOAP [32] messages to the Java XML (JAXM)

messaging interface (Fig 2).  The Matrix web service receives these SOAP messages and

forwards the DGL requests to the Data Grid Request Processor. The Request Processor

parses the DGL requests, which could be either a data grid transaction (new dataflow) or

a status query on another dataflow. A data grid transaction request is a long running

dataflow involving the execution of multiple data management and compute intensive

processes. The Transaction Handler registers a new transaction and starts the book

keeping and execution of the processes. The Status Query Handler is used to query the

state of execution of the transaction and the variables associated with a dataflow. In

Figure 2, the Matrix Engine components shown in white boxes have been implemented

for a stand-alone matrix workflow engine (version 3.1). Those in solid (black) boxes are a

work in progress to provide peer-to-peer grid workflow and involve protocols to

distribute the workflow. The P2P broker will be based on Sangam protocols [34] to

12



facilitate Peer-to-peer brokering between workflow engines. The protocols will be

loosely coupled with resource scheduling algorithms.

7 Conclusion

Data grids provide a common infrastructure base upon which multiple types of data

management environments may be implemented.  Data grids provide the mechanisms

needed to manage distributed data, the tools that simplify automation of data

management processes, and the logical name spaces needed to assemble collections.  The

Storage Resource Broker data grid is an example of a system that has been successfully

applied to a wide variety of scientific disciplines for management of massive collections.

Current research issues include identification of the appropriate approaches for federating

data grids, and the development of capable data flow processing systems for the

management of data manipulation.
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Background 

Leeds was a major participant in three projects looking at digital preservation, viz Cedars 

[1] (jointly with the Universities of Oxford and Cambridge), CAMiLEON [2] (jointly 
with the University of Michigan), and the Representation and Rendering Project [3]. With 

this background, work is beginning on setting up a digital curation centre [4]. for UK 
academia.  

As a result of this work, we strongly favour a policy of retaining the original byte-stream 
(or possibly bit-stream, see below) as the master copy, and evolving representation 
information (including software tools) over time to guarantee continued access to the 
intellectual content of the preserved material. This paper attempts to justify that approach, 

and to argue for its technical feasibility and economic good sense.  

Thus we need long-term stewardship of the byte-streams, and long-term stewardship of 
the representation information. We use the term representation information in the sense 

of the OAIS model [5]. The purpose of the representation information is to give future 
access to the intellectual content of preserved byte-streams. Without stewardship of the 

representation information we would not be exercising stewardship of the preserved data.  

Inevitability of Change in the context of long-term 

Since computers were invented in the 1940s and 50s, there have many changes in the 
representation of data. The binary digit has survived as an abstraction, and in today's 
world the byte is a world-wide standard, although we sometimes have to call it an octet.  

All we can be certain of for the long-term future is that there will be further change. 

However, even though the technology used for representing such bits and bytes has 
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changed over time, the abstract concept lives on. Nonetheless, the uses to which those 
bits and bytes can be put have grown massively over the years.  

Our work has always taken the view that "long-term" means many decades. As digital 

information technology is barely 60 years old, and we have already lost all of the 
software from the earliest machines, we need to mend our ways. We should plan that our 

digital information will still be safe and accessible in 100 years. It is then likely that 
developments over that time will render the material safe for millennia. In short, we are 

talking of a time span over which all of our existing hardware technology is likely to be 
obsolete, and also much of the software.  

It is the representation information that makes the bridge between IT practices at the time 

of preservation, and IT practices at the time of access to the information.  

Abstraction is Vital 

We can be confident that the concept of information will survive the passage of time, and 

even the concept of digital information. We need to bridge the longevity of the 
information concept to the certain mortality of the media on which the data lives. Our 

approach is to ensure that everything is represented as a sequence of bytes. We have 
confidence that the ability to store a sequence of bytes will survive for many decades, and 

probably several centuries. Current technology usually does this by calling this sequence 
a file, and storing it in a file system. There are many files in today's computer systems 

that had their origins in previous systems.  

The challenge that remains is to maintain the ability to extract the information content of 
such byte-streams. The knowledge of the formats of such preserved data is itself 
information, and is amenable to being represented digitally, and is thus amenable to 
preservation by the same means as we use for the data itself.  

By taking this focus on the storage of a stream of bytes, we divide the problem into two.  

1. Providing media for storage, and copying byte-streams from older technology to 
newer technology.  

2. Maintaining knowledge of the data formats, and retaining the ability to process 
these data formats in a cost-effective manner.  

The OAIS representation net is the means by which the knowledge is retained. By 

treating all data as an abstract byte-stream at the lowest level, we have a common frame 
of reference in which we can record representation information, independent of any 
particular data storage technology, and any particular data storing institution. We have a 
framework in which representation information will be globally relevant.  
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Keep the Original Data 

We have no faith in long-lived media [6]. Our approach is always to keep the original 

data as an abstract byte-stream and to regard it as the master.  

Why? Because it is the only way to be sure that nothing is lost. Format conversion can 
lose data through moving to a representation incapable of handling all the properties of 
the original. It can also lose data through simple software error in the conversion process 
that goes undetected until it is too late to read the previous data.  

One of us (DH) has personal experience of both situations. One in which the data was 
damaged, and one in which potential damage was avoided by keeping the original and 

producing a format conversion tool.  

How? We certainly cannot preserve the medium upon which the data is stored. In Cedars 
we developed the concept of an underlying abstract form which enabled us to convert 

any digital object into a byte-stream from which we could regenerate the significant 
properties of the original. Our approach is to preserve this byte-stream indefinitely, 

copying it unchanged as storage technology evolves.  

The question then remains as to how we continue to have access to the intellectual 
content (another Cedars phrase) of the data, and not merely a stream of bytes. Our answer 
to this is that we evolve the representation information over time so that it provides us 
with the means to transform our original into a form that can be processed with the tools 
current at the time of access. We believe that our work in the CAMiLEON project has 
shown this to be feasible in the case of a very difficult original digital object of great 
historical importance. Using emulation we successfully preserved the accessibility of the 

BBC's "Domesday" project, see below and [16].  

The very essence involves identifying appropriate abstractions, and then using them as 
the focus of the rendering software. We achieve longevity by arranging that the rendering 

software is implemented so as remain operational over the decades. The application of 
our approach to emulation is covered in Emulation, Preservation and Abstraction [7]. We 

have also investigated the same technique of retention of the original binary data coupled 
with evolving software tools in the context of format migration [8].  

Format Conversion — when? 

It is obvious that when data is to be accessed some time after its initial collection, the 
technology involved in this access will differ markedly from that in use when data 

collection took place. There is also the real possibility that other technologies have been 
and gone in the interim. Thus, format conversion is inevitable.  

For data held in currently common formats, the amount of representation information 

needed is trivial. Meaningful access to the data normally happens at the click of a mouse. 
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A current computer platform will render a PDF file merely by being told that the format 
is PDF. Conversely, faced with an EBCDIC file of IBM SCRIPT mark-up, the same 

current platform might well render something with little resemblance to the original, 
whereas back in 1975, the file could be rendered as formatted text with minimal 

formality.  

However, if we have representation information for IBM SCRIPT files that points us at 
appropriate software for rendering the file contents on current platforms, the historic data 

becomes accessible to today's users. Alternatively, we could have converted all the 
world's IBM SCRIPT files into Word-for-Windows, or LATEX, or .... We could argue 

about the choice until all the current formats become obsolete, and we could well have 
chosen a format that itself quickly became obsolete. We could have been tempted to 

convert from EBCDIC to ASCII, but that could have lost information because EBCDIC 
has a few more characters than ASCII.  

We recommend that the format of preserved data be converted only when access is 
required to the data, i.e. on creation of the Dissemination Information Package (DIP). For 
a popular item, it would obviously make sense to cache the DIP, but not to allow the 
reformatted DIP to replace the original as master. This means that the tracking of 
developments in storage technology involves only the copying of byte-streams. 
Moreover, when the format conversion has to be done, there will be improved 
computational technology with which to do it [9].  

Indirection is Vital 

There isn't a problem in computer science that cannot be solved by an 
extra level of indirection.     Anon  

The essence of our approach involves keeping the preserved data unchanged, and 
ensuring that we always have representation information that tells us how to access it, 

rather than repeatedly converting to a format in current use. We take the view that it is 
very difficult (impossible?) to provide representation information that will be adequate 

for ever. We propose that representation information evolves over time to reflect changes 
in IT practice. This clearly implies a structure in which each stored object contains a 

pointer to its representation information. This is easily said, but begs the question as to 
the nature of the pointer.  

We need a pointer that will remain valid over the long-term (i.e. 100 years). We need to 
be wary of depending on institutions whose continued existence cannot be guaranteed.  

Alongside this need for a pointer, we also have a need for a reference ID for each 

preserved object. This needs to be distinct from the location of the object, but there needs 
to be a service that translates a reference ID into a current location. This is the essence of 

the Cedars architecture [10].  
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Reference IDs could be managed locally within an archive store. Such IDs could then be 
made global, by naming each archive store, and prefixing each local name with that of the 

archive store.  

There are various global naming schemes, ISBN, DNS, Java packages, URL, URI, URN, 
DOI, etc. It may even be necessary to introduce another one, just because there is no clear 

long-term survivor. What is certain is that there have to be authorities that give out 
reference IDs and take responsibility for translating these IDs into facilities for access to 

the referenced stored objects.  

If we grasp the nettle of a global name space for reference IDs of stored objects and keep 
the representation information in the same name space, we have the prospect of sharing 

the evolving representation information on a world-wide basis. This will imply some 
discipline if dangling pointers are to be avoided.  

Enhance Representation Nets over time 

In the Cedars Project we produced a prototype schema for a representation net following 
the OAIS model, and populated it with some examples. After this experience, we had 

some new ideas on the schema of the representation net. We believe that it is inevitable 
that this area is allowed to develop further, and that operational archives are built so that 

evolution in this area is encouraged to take place. We must accept that there is likely to 
be revision in the OAIS model itself over the 100 year time-frame.  

Also, we could see that to require a fully specified representation net before allowing 

ingest could act as a disincentive to preservation of digital objects whose value is not in 
doubt. In many cases, representation information existed as textual documentation. An 
operational archive needs to be capable of holding representation information in this 
purely textual form, although with an ambition to refine it later. Such information would 
not actually violate the OAIS model, but there is a danger of being over-prescriptive in 
implementing the model. For instance the NISO technical metadata standard for still 
images [11] has over 100 elements, at least half of which are compulsory.  

For some formats the most useful representation information is in the form of viewing 

software. We need our representation nets to enable the discovery of such software (see 
below). Many current objects need only to be introduced to a typical desktop computer in 

order for them to be rendered. On the other hand, we experimented with obsolete digital 
objects (from 1970s and 1980s) in order to see some of the issues likely to arise when our 

grandchildren wish to gain access to today's material. We even tried to imagine how we 
would have gone about preserving for the long-term future using the technology of the 

1970s. It was abundantly clear that ideas are very different now than they were 30 or 40 
years ago. We must expect that today's ideas could well be superseded over the long-
term.  

In order to accommodate this, we must allow the content of objects in the representation 
net to be changed over time, in sharp contrast to the original preserved objects where we 
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are recommending retention of original byte-streams. It is vital that the reference ID that 
is originally used for representation information is re-used for newer representation 

information which gets produced as a result of development of new tools and ideas. That 
way, old data gets to benefit from new techniques available for processing it. The 

representation information that is being replaced should of course be retained, but with a 
new ID, which should then be referenced by the replacement.  

Representation Nets should link to software 

Our representation nets in Cedars very deliberately contained software, or in some cases 

references to it. We have no regrets on this issue. Ideally we want software in source 
form in a programming language for which implementations are widely available, but it 

seems churlish to refuse to reference the Acrobat viewer as a way of rendering PDF files, 
just because we do not have the source, but see example 1 below.  

A format conversion program that is known to work correctly on many different data 
objects is clearly a valuable resource for access to the stored data, and should be available 

via the representation network.  

As regards the issue of longevity of such software, we argued earlier for the longevity of 
abstract concepts such as bits, bytes and byte-streams. Programming languages are also 

abstract concepts, and they too can live for a very long time. Current implementations of 
C or FORTRAN will run programs from long ago. Other languages which have been less 

widely used also have current implementations that function correctly.  

The source text of a format conversion program which is written in a language for which 
no implementation is available is still a valuable specification of the format, and has the 
benefit of previously proven accuracy. We address the issue of evolving emulator 
programs in C-ing Ahead for Digital Longevity [12], which proposes using a subset of C 
as the programming language for writing portable emulators.  

Examples 

We illustrate the way in which we see representation information evolving over time, by 

reference to three examples drawn from rather different computational environments.  

Example 1: Acrobat files 

In today's IT world it is very common to use Adobe Acrobat® portable document format 
(PDF) for holding and transmitting electronic forms of what are thought of as printed 
documents. The only representation information needed by today's computer user is the 

URL for downloading the Acrobat® Reader™. The representation net for PDF files is 
basically this single node, detailing how to gain access to the software for rendering the 

data. In reality, it should be an array of nodes with elements for different platforms. All 
preserved PDF files would reference this one piece of representation information. The 
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recent appearance of the GNU open-source Xpdf [13] would be reflected by adding it to 
this array.  

Example 2: IBM SCRIPT files 

One upon a time, the representation information for a preserved IBM SCRIPT file would 

point to the IBM SCRIPT program for the IBM/360 platform. Unfortunately we did not 
have the OAIS model in the 1970s, but if we had had an OAIS archive for storage of our 

VM/CMS data, this is the only representation information that would have been needed. 
(Actually the CMS file-type of SCRIPT performed the rôle of representation information, 

much as file extensions do today on a PC.)  

As the 30+ years elapsed, our putative OAIS archive would have expanded the 
representation information for SCRIPT by information suitable for more current 
platforms — including the human readable documentation for a live-ware platform. 

There would probably also be reference to the Hercules project [14] which allows 
emulation of IBM/360/370 systems of yesteryear. This need to keep up-to-date was 

highlighted in the InterPARES project [15].  

Example 3: The BBC Domesday Project 

In 1986, to commemorate the 900th anniversary of the Domesday Book, the BBC ran a 
project to collect a picture of Britain in 1986, to do so using modern technology, and to 

preserve the information so as to withstand the ravages of time. This was done using a 
micro computer coupled to a Philips LaserVision player, with the data stored on two 12" 

video disks. Software was included with the package, some on ROM an some held on the 
disks, which then gave an interactive interface to this data. The disks themselves are 
robust enough to last a long time, but the device to read them is much more fragile, and 
has long since been superseded as a commercial product.  

Here we have a clear example where the preservation decisions placed (mis-placed) faith 
in the media technology of the day, and more crucially in the survival of the information 

technology practices of the time.  

The CAMiLEON project used this example as a test case to show the effectiveness of 
emulation as a preservation technique. A detailed treatment is to be found on the 

CAMiLEON web site [16].  

We can look at this example with particular reference to its long-term viability, both with 
regard to the original efforts in 1986, and to the emulation work of 2002. We shall use it 
to illustrate our ideas about the appropriateness of emulation software as part of the 
representation information.  

Firstly, a bit of background to the work.  
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We have taken our own advice and preserved the data from the original disks as abstract 
byte-streams. We can represent this step as the process marked A in the diagram (taken 

from reference [7]): 

 

The technique was to show that we could use emulation to bridge from the Original 
platform to a different host platform, labelled Host platform 1 in the diagram. The 

ingest step (marked A in the diagram) involves identifying the significant properties of 
the original. The data consisted of the four disk surfaces, each with 3330 tracks, and some 

software in ROM held inside the BBC micro computer. Some tracks were video images 
and some held digital data which was often textual. We preserved the ROM contents 

straightforwardly as binary files, and made each track of the disk into a binary file of 
pixels for the video images, and a straightforward binary file for each of the digital data 

tracks. This we claim preserves the significant properties of the software and data 
necessary for it to run on the BBC computer with its attached video disk player. An 

example representation network describing the capture process was constructed as part of 
the Representation and Rendering Project [17]  

To demonstrate the validity of this claim, we produced the emulator shown as Emulator 
1 on the diagram. The original software relied on an order code and an API (applications 

program interface) labelled 1 in the diagram. In order to achieve successful preservation 
of this digital object, we need to reproduce this API with software that operates with a 

more modern API, labelled 2 in the diagram.  

The emulation of the BBC micro-computer was obtained from an open-source emulation 
written by an enthusiast (Richard Gellman) and available on the net [18]. Although the 

achievements of enthusiasts are not always ideally structured for use in digital 
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preservation work, they can often provide a useful starting point for further development. 
At the very least the source code can act as a handy reference point for new work.  

The emulation of the video disk player was done by our own project staff. This emulation 

software then becomes the major component of the representation information for this 
data. Its longevity depends crucially on the longevity of the interface labelled 2. Here we 

have used code that is written in C, and makes use of only a few Win32-specific API 
calls. In other words our interface labelled 2, is not the whole API of Host platform 1, 
but only the facilities that we have chosen to use. The move to another platform is made 
easier by choosing to use as few as possible of the proprietary features of Host platform 
1. We may need to recode a few bits of the screen driving routines, but by and large we 
can expect to find on Host platform 2 an API (shown as 3) that has most of the features 

needed on the new platform. We expect that a slightly revised emulator called Emulator 
1.01 will readily be generated (step B) to run on Host platform 2. Meanwhile, the 
preserved digital object will be completely unchanged, as indicated by the large equals 

sign.  

Example 3: The BBC Domesday Project — Evolution of Representation 
Information 

At the outset, the storage media consisted of two 12" video disks. The representation 
information (a booklet supplied with the disks) basically said buy the appropriate 
hardware including the two E-PROM chips holding software that is used in accessing the 
video disk player. In addition, the BBC microcomputer had a well documented API for 
applications programs. This API (or preferably the subset of this that happened to be 
used) provides the interface labelled 1 in the diagram.  

Our preservation of the data from its original preservation medium created byte-streams 

that closely mirrored the actual physical data addressing. This maximised the validity of 
the existing representation information, viz. the documentation of the API mentioned 

above.  

The emulator then implements this API, opening up the question of the API upon which 
it itself runs. Thus we add to the representation information the emulator, and the 

information concerning the API needed to run it. This is not yet stored in a real OAIS 
archive, but we do have the materials necessary to achieve this, and data from the disks is 

stored in our LEEDS archive[19].  

Our care in producing an emulation system that is not tied too closely to the platform 
upon which it runs illustrates our desire to produce representation information that will 
indeed stand the test of time by being easily revised to accommodate newly emerging 
technologies. This revised emulator becomes an addition to the representation 
information, extending the easy availability of the original data to a new platform. 
InterPARES [15] identified clearly the desire of users to access the material on the 
technology of their own time.  
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So why emulate in this case? The interactive nature of the digital object is really a part of 
it. There is no readily available current product that reproduces that interaction, so we 

treat the interaction software as part of the data to be preserved. On the better examples of 
current desk-top hardware, it runs faster than the original.  

Share and Cross-Reference Representation Nets 

We have argued earlier for the impossibility of producing an adequate standard for 

representation information which will retain its relevance over the decades. To attempt to 
do so would stifle research and development. We must therefore expect that different data 

storage organisations may develop different forms of Representation Information. 
Initiatives such as the PRONOM [20] file format database and the proposed Global File 

Format Registry will also produce valuable resources that should be linked from 
representation information.  

It would seem that collaboration should be the watchword here.  

The emerging solutions for IBM SCRIPT files in example 2 are likely to be applicable to 
any institution holding such data. With our proposed global namespace, they can all 

reference the same representation net, and benefit from advancing knowledge on the 
rendering of such files.  

Global Considerations 

The implementation of preservation on a global basis means that there will be no overall 
command. Co-operation will have to be by agreement rather than by diktat. This situation 
has some aspects that resemble the problems of achieving true long-term preservation. 
We cannot predict the future accurately, nor can we control it to any great extent, so the 

ambition to operate on a global scale despite being unable to control activities 
everywhere in the world sits well with the need for future-proofing. The future is another 

country whose customs and practices we cannot know.  

Referential Integrity 

We are proposing that no object that has a name in the digital store is ever deleted. It may 
be modified, but never deleted. Thus, anyone may use a reference to an object in the 

OAIS digital storage world confident that it will never become a dangling pointer.  

However, the representation information in any OAIS archive will need to refer to 
information outside its control. (This is actually an inevitable consequence of Gödel's 
incompleteness theorem — reflected in Cedars by describing nodes holding such 

references as Gödel ends.) Many of these external references will relate to the current 
practice of the time.  

A vital part of the management of such an archive will involve keeping an inventory of 

all such external references, and maintaining a process of review of the inventory in the 
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search for things that are no longer generally understood or refer to information that is no 
longer available. The remedy in such cases is to update the referring nodes to reflect the 

new realities. Clearly it is in the interests of good management to try to keep such nodes 
to a minimum.  

For example, a store would have a single node that describes the current version of 

Microsoft Word to which the representation information for any ingested Word file 
would refer. When this version becomes obsolete, this one node is updated with 

information on how to access data in the old format, or to convert to a newer format.  

The two level naming proposed earlier helps greatly in implementation of such a policy.  

Digital Curation in the UK 

The education funding authorities in Britain are currently in the process of setting up a 

digital curation centre [4]. This is seen as a centre for oversight and co-ordination of 
digital storage, and for R&D. The decision was announced shortly before Christmas. The 

centre will be based in Edinburgh, the home of the existing e-Science Centre [21], and 
EDINA [22].  

The centre will not be a repository for the data itself.  

It will provide consultancy and advice services, and a directory of standard file formats.  

There will be a significant research activity, and a particular focus on digital integration, 
the enabling of research combining data from different sources.  

Academia is addressing its own problems, but what about the rest of the world of digital 

information, e.g. engineering data? How confident are we that the CAD data for nuclear 
power stations has an appropriate lifetime, or even half-life?  

Summary 

We argue strongly for retention of the original in the form of a byte-stream derived as 
simply as possible from the original data, and for the use of representation information to 
enable continued access to the intellectual content.  

We take the view that for much material it is impossible to have perfect representation 
information at the time of ingest, but that we must preserve the data and develop its 

representation information over time.  

Ideas on the nature of representation information will evolve over time. We must have 
systems capable of taking on board changing schemas of representation information.  

A two-level naming system, separating reference ID from location (and translating 
between them) should be the practice for implementing pointers in an OAIS archive, as a 
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prerequisite for our proposed policy of evolving representation information over time, 
and sharing it on a global scale.  

A Footnote on Bits versus Bytes 

The OAIS model uses the bit as the lowest level. However, the byte is the ubiquitous unit 

of data storage. In today's systems one cannot see how the bits are packed into bytes. 
When a file is copied from one medium to another we know that whether we read the 

original or the copy, we shall see the same sequence of bytes, but we know nothing of the 
ordering of bits within the byte, and these may be different on the two media types. On 

some media (e.g. 9-track tape) the bits are stored side-by-side.  

Pragmatically, we regard the byte as the indivisible unit of storage. If the OAIS model 
requires us to use bits, then we shall have a single definition of the assembly of bits into a 
byte. This would enable us unambiguously to refer to the millionth bit in a file, but not 

constrain us to hold it immediately before the million-and-oneth bit.  
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Abstract

The maturity and mission-critical deployment of Fibre Channel (FC) in storage area 

networks (SANs) creates a unique class of multi-terabit networks with demanding

throughput, latency, scalability, robustness, and availability requirements. This paper 

reviews the state of and critical system-level requirements for SANs. It describes how 

Internet SCSI (iSCSI), FC over IP (FCIP), and Internet FC Protocol (iFCP) integrate with 

FC SANs and discusses associated benefits and challenges. Finally, the paper examines 

case studies in performance and protocol tuning in high-speed, long-delay networks, 

which are increasingly critical for FC-to-IP integration opportunities and challenges. 

1.0 Introduction 

Information technology (IT) is a key driver and challenge for businesses, government,

and research/development centers. Data centers are a critical asset and provide the 

infrastructure that houses information processing, storage, and communication resources. 

Corporations are under tremendous pressure to manage return on investment, massive

growth in information processing and storage needs at a global scale, management,

performance, availability, and scalability requirements, and the IT infrastructure. To add 

to the challenges, there are many new technology and deployment decisions that have

significant implications in terms of value and impact to the data center.

SANs are a critical part of the data center, and are based on high speed, high bandwidth, 

low latency, and low error rate interconnects for scaling application, database, file, and 

storage services. FC is the key technology and standard that drive rapid growth of SAN 

deployment. The development of global and distributed file systems, content-addressable 

storage, object-oriented storage, cluster and blade servers, and utility computing is 

driving more integrated IP and FC network usage. The evolution of the data center and 

new information and computing trends drives the data center toward a more dynamic

resource and performance provisioning and management model, which demands more

efficient and scalable computing, information storage, and networking.  In addition, 

business and operational requirements in the data center drive the scaling and evolution

of larger SANs encompassing metropolitan and wide-area distances, high security and 

availability, and multi-protocol networks. In the face of these trends, ease of use,

configuration, and management of the SAN is even more important.

This paper reviews important requirements and deployment examples. It describes 

emerging IP SAN technologies and how these technologies interface and integrate with 
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FC. It also examines several protocol and design considerations, system-level behaviors, 

and areas that need further research and enhancement. This paper leverages the efforts of 

many engineers, architects, and researchers from the industry. The paper uses their 

findings and recommendations, and tries to relate them to SAN applications.

2.0 The FC SAN Today 

2.1 FC SAN Overview

FC technology [1] and product deployment has evolved from 1 gigabit per second (Gbps)

to 2 Gbps links, and there is development to introduce 4 Gbps and 10 Gbps links. An FC 

network or fabric is a multi-terabit, low-latency switching network, mainly used to

interconnect servers to storage. Although a FC fabric is designed to support any-to-any 

connectivity, the actual use tends to be some-to-some. Each server talks to a few storage

devices or each storage device talks to a few servers, with occasional traffic for backup or 

other purposes involving devices shared by many sets of storage and servers. Deployment

of mid-range to high-end FC fabrics is based on FC directors [2], which are high-

availability switches with high-aggregate switching bandwidth and high port density. For 

the edge part of a large or small fabric, smaller and lower-cost FC switches are typically

used. Directors and switches use one or more interswitch links (ISLs) to connect and

form a larger fabric. It is common to deploy one or more isolated FC fabrics, called SAN

islands. SANs are also extended to campus, metropolitan, and wide-area distances using 

T1/T3, ATM, IP, SONET, dark fiber, and DWDM technologies. 

Storage
Inter-Switch

Link (ISL) 

Servers/Blade Servers

Servers/Blade Servers

SwitchSwitchSwitchSwitch Switch Switch Switch Switch SwitchSwitch

SwitchSwitchSwitchSwitch

Host

Storage Storage

Switch Switch Switch Switch SwitchSwitch

DirectorDirector

DirectorDirector

Storage

Figure 1 Example of a Large FC Fabric 

Figure 1 shows an example of a large (approximately 1000 node) fabric, with directors 

and switches configured to provide high availability and high-aggregate bandwidth.

Servers are typically aggregated at the edge of the fabric, and storage arrays are typically

configured near the core of the fabric. It is typical to over-subscribe server link

bandwidth in comparison to storage array link bandwidth (more servers with respect to a 

given storage array).  A network of directors forms the core (or backbone) of the fabric.
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For a fabric to be operational, there is a fabric initialization, involving all switches, 

directors, and devices. Initialization steps include parameter exchanges, Principal Switch

selection, address assignment, path computation, and zone merge operations. As part of

the path computation, directors and switches in a fabric run Fabric Shortest Path First 

(FSPF) routing protocol to build the forwarding data base. FSPF is a link state protocol 

that computes shortest path routes for frame forwarding. Within a FC fabric, there are 

name services and state change notification protocol services for resource discovery, 

configuration, and change management. FC zoning is an overlay network mechanism to

limit the visibility and connectivity of servers to storage devices. A device can be in one 

or more zones, thereby enabling the sharing of servers (or clusters of servers) and storage 

resources. When an ISL changes state, all these protocols normally run, and when an end 

device comes up or goes down, name services and state change notification services run. 

These services consume more and more resources as the fabric size grows.

2.2 Traffic Patterns in Fibre Channel

Most FC traffic uses the SCSI-FCP protocol [4] on top of FC Class 3 (unacknowledged 

datagram) service. SCSI-FCP is a request-response protocol that provides frame

sequencing within transactions provided by lower-layer FC protocols. On frame loss or

error, the protocol performs a transaction-level time out and retransmission. No 

retransmission of individual frames is supported. Time-out values are typically pre-

configured and not based on actual round trip delay. The performance of SCSI-FCP is

therefore sensitive to frame loss or frame level errors. Table 1 shows example read and 

write transactions and protocols frames.

Transaction Protocol Direction Frame Type Typical Frame Length 

Read Server to Storage FCP_CMD (Read) 68 Bytes 

Storage to Server FCP_XFER_RDY 48 Bytes 

Storage to Server FCP_DATA (one or 

more)

Up to 2084 Bytes 

Storage to Server FCP_RSP 64 Bytes 

Write Server to Storage FCP_CMD (Write) 68 Bytes 

Storage to Server FCP_XFER_RDY 48 Bytes 

Server to Storage FCP_DATA (one or 

more)

Up to 2084 Bytes 

Storage to Server FCP_RSP 64 Bytes 

Table 1 Example SCSI-FCP Read and Write Protocol Frames 

As bandwidth and delay product increases, it is critical to understand performance tuning 

and error recovery mechanisms. For configurations with long delay, it is important to 

consider the way data is moved (write or read). As shown in Table 1, the write 

transaction has one additional round trip delay more than the read transaction. Therefore, 

the read operation is faster when network delay is long.
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2.3 Critical Factors in SAN Deployment

SAN deployments today range from small fabrics with less than 100 devices to large

fabrics with several thousand devices. The following are factors critical to SAN design

and deployment:

High availability: The impact of down-time and lost of information to business is

severe. High availability requirements are quantified to vary from several 9’s, to 

99.999%, to no down time. Most highly available fabrics are based on dual-rail

redundancy and highly available directors, switches, and gateways. Servers and 

storage devices may have redundant paths through one fabric or through separate 

redundant fabrics with no shared single point of failure. Directors and some

switches are designed with high-availability features, including fully redundant 

and hot swappable field-replaceable units (FRUs) and hot software download and 

activation, meaning that operation may continue through a software upgrade. 

Robustness and stability: Some FC servers, associated host bus adapters (HBAs) 

and storage devices are extremely sensitive to frame loss and frame out of order 

delivery. Error recovery in the SCSI-FCP protocol is based on command and 

transaction level time-out and retry. Therefore, SCSI-FCP expects very low

frame loss rate, since frame loss has significant performance impact. The design 

of SANs has to account for the following factors: 

o It is important to limit and reduce FC fabric size in terms of number of 

switching nodes. The goal is to limit the frequency of fabric initialization,

FSPF route computation, and traffic for state notification and name

services.

o It is critical to ensure there is adequate aggregate bandwidth (fabric-wide

and for individual links), to avoid severe and prolonged congestion. FC

fabrics use a link-level, credit-based flow control, which is useful for 

handling short-term, bursty congestion. In FC, it is not common to use

active queue management techniques (e.g., based on random early 

detection) to minimize queue build up. It is typical for a FC switch to 

discard frames that have been queued for a pre-determined time (e.g., 0.5 

to 1.0 second), as part of the stale frame discard policy. As the 

deployment of multi-speed (1 Gbps, 2 Gbps, 4 Gbps, and 10 Gbps) ramps

up, the design of the network and switching architecture becomes more

challenging. As the size of network grows, comprehensive congestion 

management mechanisms become more critical and current link-level 

flow control may no longer be adequate.

Performance: Most FC switches and directors specify best-case frame latency to

be less than a few microseconds. But latency grows with loading and can result 

in effective bandwidth to be significantly less than nominal bandwidth. Measured 

frame latency at 70% link utilization [3] showed it was 5.2 to 6.5 microseconds

for one vendor’s product and 2.6 to 2222.6 microseconds for another vendor’s 
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product. The lesson is that not all switches are designed equal. Switching 

architecture issues like head-of-line blocking and internal resource bandwidth 

(throughput or frame rate) limitations impact throughput, latency, and congestion 

loss, especially at higher offered load. 

Distance extension: Requirements for disaster recovery and business continuance 

(file/data mirroring, replication, and backup) are driving the deployment of SAN

extension to deliver better performance and availability. In addition to 

robustness, stability, and performance considerations, it is important to 

understand the configurations, products, and protocols and system tuning 

parameters with respect to distance extension technology. We examine this topic 

later.

Scaling the SAN: A large number of FC fabrics deployed today are small islands

of fabrics that are not inter-networked into a large and connected SAN. Reasons 

for deploying isolated islands include early adopters learning new technology, 

difficulty and lack of confidence in management and operational stability of a

large fabric, and insufficient business and operational drivers (for connecting 

islands of FC fabrics). However, there are many benefits of internetworking FC 

islands. Resource sharing (such as tape library for backup) and the ability to 

dynamically provision and allocate resource are some of the benefits. When

scaling an FC SAN, it is important to maintain performance and availability

properties. Since a FC fabric is similar to an IP layer 2 switching network, it is 

important to constrain the number of switches in a fabric so the resulting fabric is

stable and robust. When interconnecting FC fabrics, it is critical to consider 

isolating FC fabric local initialization and services, while allowing servers and 

storage devices to be interconnected regardless of locality. This is an area of

further research and standardization work, and currently ANSI T11 has a fabric

extension study group addressing these topics. 

3.0 FC & IP Integration & Challenges 

3.1 IP SAN Developments

The emergence of iSCSI, FCIP, and iFCP standards [5, 6, 7, 8, 9] enables IP technology 

to enhance the deployment and benefits of SANs. FCIP and iFCP protocols use a

common framing and encapsulation design. We examine the applicability, design, and 

limitations of these technologies in the following sections. These protocols leverage the 

matured IPSec standard and technology to enable security (including authentication, 

integrity, and privacy). As part of the protocol suite, Internet Storage Name Service

(iSNS) [10] provides a method to manage and configure names, registry, discovery, and 

zones for multi-protocol SANs. The use of Service Location Protocols (SLP) [11] to 

discover services and resources is another critical part of the standard.
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3.2 iSCSI

iSCSI is a SCSI over TCP transport protocol used between a SCSI initiator and a SCSI

target for storage-block level transport of SCSI commands and payloads. iSCSI protocol 

uses TCP/IP and IPSec as its network transport and security protocols.  It has many

features designed to leverage standard TCP/IP protocols to block storage needs. These 

features include the use of multiple TCP connections (for a given session), cyclic 

redundancy check (CRC) digests, out of order data placement, and TCP connection 

failure recovery options. iSCSI design and analysis have been presented in several papers 

[12, 13, 14, 15, 16]. 
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        Figure 2 FC-iSCSI Gateway

In Figure 2, the FC-iSCSI gateway provides the internetworking of iSCSI devices with

FC devices, while communicating with each of the networks appropriately. While the FC

SAN and the IP SAN are operating independently, the gateway maps selected iSCSI 

devices into the FC SAN and selected FC devices into the IP SAN. When a FC server 

creates a SCSI-FCP session to a storage device, the gateway intercepts the request and

acts as a proxy for the storage device. On the IP side, the gateway acts as a proxy initiator 

(for the server), and creates an iSCSI session for the storage device. The gateway 

maintains and manages the state of the gateway portion of supported sessions. For an IP-

based server creating an iSCSI session to a FC storage device, the gateway performs

similar roles as proxy target on iSCSI session and proxy initiator for the SCSI-FCP 

session.

An iSCSI gateway performs several important functions, including FCP and iSCSI

session-level protocol translations, command and payload forwarding, error checking, 

and command/session-level error propagation. A gateway has to manage device

discovery and registry (on the IP side with an iSNS server, and on the FC side with FC 

name services), authentication of FC and IP devices, and mapping of device names to 

local addresses, etc. It is important that a gateway is as transparent as possible to the 

servers and storage devices using the gateway, while maintaining high data integrity. It 
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should have very low latency and sufficient bandwidth to forward commands and 

payloads, and support a sufficiently large number of sessions to enable storage 

consolidation (a high end storage array on the FC side shared by a large number of IP 

based servers). Management of the multi-protocol SAN is a critical part of the 

deployment success.

3.3 FCIP

FCIP is a tunneling protocol that transports all FC ISL traffic. Similarly, FCIP uses 

TCP/IP as the transport protocol and IPSec for security. A FCIP link tunnels all ISL 

traffic between a pair of FC switches, and may have one or more TCP connections 

between a pair of IP nodes for the tunnel end points. From the FC fabric view, an FCIP 

link is an ISL transporting all FC control and data frames between switches, with the IP 

network and protocols invisible. One can configure one or more ISLs (using FCIP links) 

between FC switches using FCIP links. Figure 3 shows an example of FCIP links being 

used as ISLs between FC switches A and B.

FC SWITCH

B

FC SWITCH

     ASTORAGE

STORAGE

SERVER

ISLs over FCIP

FC-4

FC

FC-4

FC
IP

SERVER

Figure 3  FC-FCIP Tunnel 

A key advantage of the FCIP tunnel approach is transparency to a fabric, as existing 

fabric tools and services are used. Once a FCIP link is configured, existing fabric 

operations and management continue. Similarly, fabric initialization, FSPF routing

protocol, and name/state change services run transparently over FCIP links. However,

since FC fabric-level control protocols run over the FCIP tunnel, IP and TCP connection

failures can disrupt the FC fabrics on both sides. Given the speed and bandwidth 

differences between FC and a typical IP network used to interconnect remote SANs, the 

design and management of congestion and over-load conditions is important to 

understand.

For the FCIP tunnel, a simple FIFO (first in first out) frame forwarding queue design can 

result in head-of-line blocking of fabric initialization protocol frames when the tunnel is 

congested, or the TCP connection is in slow-start recovery mode.  Another case to 

consider is when a SCSI-FCP transaction time out occurs, the entire transaction (such as

1 MB block) might be retransmitted over an FCIP link that is experiencing congestion. In 

addition, there might be multiple application streams using the same FCIP link, and there 

is no mechanism to help reduce or avoid network congestion. These are possible 
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scenarios of overload and congestion that can result in performance and stability issues

that impact the entire fabric. For a medium to large fabric, these are critical issues for 

concern. Most FCIP deployments are based on small fabrics, where there are a small

number of devices and switches at each end of the FCIP link, and these issues are less 

critical.

3.4 iFCP

iFCP technology is a gateway-to-gateway protocol for providing FC device-to-FC device 

communication over TCP/IP. For each pair of FC devices, there is an iFCP session 

created between a pair of gateways supporting the devices. An iFCP session uses a TCP 

connection for transport and IPSec for security, and manages FC frame transport, data 

integrity, address translation, and session management for a pair of FC devices. Since an 

iFCP gateway handles the communications between a pair of FC devices, it only 

transports device-to-device frames over the session, and, hence, the FC fabrics across the 

session are fully isolated and independent. This is a major difference between iFCP and 

FCIP, in that FCIP builds an extended fabric, tunneled over IP. 

In contrast to an FC-iSCSI gateway, an iFCP gateway transports FC device-to-device 

frames over TCP, and in most cases original FC frames, including the original CRC and

frame delimiters, are transported. An FC-iSCSI gateway terminates and translates SCSI-

FCP protocol from the FC side and similarly terminates and translates iSCSI protocol 

from the IP side.
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STORAGE

SERVER
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FC-4

FC-
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GW

FC

FC-4

FC-
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GW

FC

Figure 4  FC-iFCP Gateway

The iFCP draft standard specifies an address-translation mode as well as an address-

transparent mode, depending on whether the FC addresses of devices are translated or 

not. An FC device exchanges login and protocol parameters with another FC device using 

FC link service protocol frames as part of the session creation and parameter exchange

protocol. In address-translation mode, a gateway intercepts these device-to-device link

service protocol frames and translates device addresses embedded in the frames. It 

regenerates frame CRCs when the original frame content is changed, which imposes 

extra overhead on the iFCP gateway. Address translation is a particularly useful feature 

when interconnecting FC fabrics. It enables installation of a gateway between existing 
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fabrics without requiring fabric address changes. A gateway manages the session state,

addresses translation and mapping, and provides proxy functions for remote devices. In 

addition, a gateway performs security functions (like authentication of devices), and 

works with an iSNS server for registry and discovery functions. 

The configuration and management of an iFCP gateway is more involved than for an 

FCIP gateway, as each device-device session has to be set up. Also, an iFCP gateway has 

more device proxy-related states to manage. As the number of device-to-device sessions

increases, an iFCP gateway design becomes more complex and may result in 

performance and stability issues. However, one can use admission control techniques to 

limit the number iFCP sessions allowed for a gateway. Since an iFCP gateway is

managing device-to-device communications, it can enforce some degree of flow control 

by pacing command forwarding at the time of congestion. The iFCP specification allows 

an optional unbounded connection feature, which sets up and uses a pool of backup TCP 

connections for fast-session fail-over support. This assists a gateway in providing faster 

connection fail-over. 

3.5 TCP/IP & Transport Protocol Discussions

Some classes of applications have different requirements for transport services and 

protocols. For example, applications that prefer timeliness in delivery over reliable data 

delivery (such as RealAudio, Voice over IP) prefer a different transport service and 

protocol design [17] than that of TCP. Also, for applications that prefer a different type of

fault tolerance, reliability, and a non-byte stream-oriented transport service, a different 

type of transport protocol might be needed (such as Stream Control Transmission 

Protocol (SCTP) [18]). These are examples of new transport protocol research and 

standard development activities. TCP protocol is undergoing many enhancements to 

improve performance under different operating conditions, and these enhancements 

include High Performance Extensions (TCP Window Scaling Option, Round-Trip Time

Measurements, Protect Against Wrapped Sequence Numbers) [19], Selective Ack Option

[20, 21], Explicit Congestion Notification [22, 23], Eifel Detection Algorithm [24], and 

High Speed TCP (HSTCP) [25].

As part of the design considerations for an IP SAN, the design and tuning of TCP for the 

SAN is critical. For iSCSI servers and storage devices, the design and tuning of protocol 

off-load, zero-copy, interrupt coalescing, and buffer-MTU-MSS tuning are critical (MTU 

is the maximum transfer unit, MSS is the maximum segment size). For iSCSI, FCIP, and 

iFCP gateway design, buffer-MTU-MSS tuning is very critical and several of the 

aforementioned TCP enhancements are important considerations for scaling the IP SAN 

for 1 to 10 Gbps speeds. For long and fast network (LFN), HSTCP enhancement is an 

important design. Multiple TCP connections for iSCSI, FCIP link, and unbounded iFCP 

connections are critical considerations for load balancing and high availability. 

In addition to the IP based transport, there are developments for operating Gigabit 

Ethernet and FC protocol directly over SONET-based transports for Generic Frame

Protocol ITU-T G.7041 standards [26].
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4.0 Some Case Studies 

4.1 Experiment of 10 Gbps Transcontinental Data Access

As part of the Supercomputing Conference 2002 demonstration of SAN extension over a 

multi-gigabit transcontinental network, [27] test results of an FC SAN interconnected

with iFCP gateways over a 10 Gbps link from San Diego to Baltimore were presented. 

Figure 5 shows the configurations used for the experiment.

FC Switch

IP Switch/RouterIP Switch/Router

IP SAN GW

FC Switch
IP SAN GWIP SAN GW

        Figure 5  Schematic of Data Access for the SC'02 demonstration

The Supercomputing ’02 experiment proves the operation of a network running FC over 

IP network, using iFCP gateways, between the San Diego Supercomputer Center (SDSC)

and the SDSC booth in Baltimore. The experiment demonstrates that FC traffic, using

iFCP gateways, runs over a 10 Gbps link in excess of 2,600 miles, with a round-trip 

latency of 70 to 90 milliseconds. Aggregate throughput was relatively constant at 717 

MB/s, and read performance was slightly better than write performance. In addition to the 

IP/iFCP based demo [27], there was another experiment of FC traffic over FCIP using a 

10 Gbps SONET link, configured between the Pittsburgh Supercomputing Center (PSC)

booth and the SDSC booth at the SC’02 show. 



4.2 Remote Mirroring

Example of Remote 

Source

MAN/WAN

Target

Figure 6  Remote Mirroring – Throughput vs Delay 

When performing remote mirroring of logical units (LUNs), remote copy operations must 

synchronize data copied to each of the LUNs to ensure data coherency within the mirror

group. The effective throughput of the remote mirroring of 12 LUNs was shown to drop 

from 25 MBps to about 5 MBps as the round trip delay increases from 0 to 10 ms, as 

shown in Figure 6 [28]. It is important to configure and tune file and block size, MTU, 

MSS, and synchronization rate. In addition, the use of compression to reduce the amount

of data transfer is important.

4.3 Delay and Cache Effect on I/O Workload

Figure 7  Delay and Cache Effect of PostMark Experiment 

PostMark was used to test the delay and cache sensitivity of the I/O workload of a large 

email server [29]. Figure 7 shows the PostMark transactions rate of I/O from a FreeBSD 

host to a storage element (SE) with varying delays (to the SE) and cache sizes in 

FreeBSD VM cache. The transaction rate declines as the delay is increased, and with

larger cache sizes the transaction rate increases. Application performance sensitivity with 
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respect to delay and error recovery is an area that needs further research and 

understanding.

4.4 Long Fast Network Experiment

In another case [30], the University of Tokyo conducted an experiment using ‘iperf’ 

running TCP between Maryland and Tokyo, traversing the Abilene and APAN networks. 

The result was surprising in that Fast Ethernet is sometimes faster than Gigabit Ethernet 

on LFN. The main cause of the throughput degradation with Gigabit Ethernet LFN tests 

was congestion overflow of an intermediate router, resulting in cranking of TCP time out, 

slow start and congestion control mechanisms. Transmission rate control is important to 

mitigate the overflow in the bottleneck’s buffer in addition to the window size control.

Therefore, transmit rate or bandwidth limiting is another important mechanism that 

avoids or mitigates the impact of congestion overflow in an intermediate network.

4.5 Fast Write

We examine a method to improve the write performance over a long delay network. As 

shown in Table 1, a SCSI write transaction incurs two round trip delays for a data block. 

The maximum block size is determined by the target (storage) device’s buffer capacity

and is specified by the target in the XFR_RDY message. For example, writing one MB of 

data using 64 KB blocks takes 16 transactions, which is 32 round trips plus data transfer

time. Fast Write [31] is a way to minimize round-trip delay overhead and accelerate SCSI 

write performance leveraging a gateway’s buffer capacity. The XFR_RDY is spoofed by 

the gateway on the initiator (server) side of the network, and the data is buffered by the 

gateway on the target side of the network until the target sends its own XFR_RDY.  In

addition, the use of TCP protocol with selective retransmission (on error) provides better

frame loss recovery than retransmitting the entire block on timeout (as in the SCSI-FCP 

case). With Fast Write, the number of round trip involved for a 1 MB transfer is reduced 

to two round trips. 

Figure 8  Fast Write Example 
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Figure 8 shows an example of Fast Write, where a 1 MB transfer is negotiated between

the source and the left-hand gateway as well as between the two gateways. For the write

operations between the final gateway and destination, the maximum block size is 

specified by the destination. Most of the round-trips required are over the SAN between 

the right-hand gateway and destination. Therefore, the SAN should have higher 

bandwidth, lower latency, and lower error rate than the WAN connection between

gateways. Fast Write is an innovative method of using standard protocols to leverage the 

capability of a gateway and leverage TCP protocol benefits over WAN.

5.0 Summary 

We present several of the critical requirements and best practices for FC SAN 

deployments. We examine IP SAN technologies and protocols, and show that FC and IP 

integration works well - integrated SANs are a critical part of today’s data center. We 

explore how several new high-speed protocol extensions work, and areas that need 

further research and development. The deployment of high-speed and long-distance 

networks for data centers (while providing good performance and reliability) is becoming

very important and has potential value as well as challenges.
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1 Introduction

The longevity of many data formats is uncertain at best, and more often is disturbingly

brief.  Maintenance of backwards compatibility of proprietary formats is frustratingly

limited.  The physical media that store digital data are ephemeral. Even if the data are

properly preserved, the information that allows the data to be searched and which

maintains the context of the data is often lost, threatening data utility. These are only a

few of the formidable problems that threaten the long-term preservation and  long-term

use of digital data.

Over the past decade, much has been written about the problems of long-term digital

preservation (see for example [14], [15], [32], [38], and [39]). Many approaches or

strategies to address these problems have been proposed (see for example [7], [10], and

[32]), and a number of prototypes and test beds have been implemented (see for example

[44]). No one has developed a comprehensive solution to these problems. In fact, there

may not be a single solution.

Most of the literature applies directly to the needs of libraries, museums, and records

management organizations. Only rarely are issues related to preservation of science data

discussed directly. Stewards of scientific data often face much different issues than the

typical library, museum, or records archive. Some issues are simpler others more

complex.

In this paper, we provide a brief history of data stewardship, particularly science data

stewardship, define long-term stewardship; and discuss some of the problems faced by

data managers. We describe a broad array of data stewardship issues, but we will focus

on those that are particularly amenable to technological solutions or that are exacerbated

when archives are geographically distributed.

2 A Brief History of Scientific Data Stewardship

A cursory review of scientific data stewardship as a discipline distinct from document

preservation or records management suggests that it is a fairly recent concept. For most

of human history, what little scientific data existed was recorded in notebooks, logs or
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maps. With luck, a library or archive would collect and preserve these logs and maps.

The archives may have been maintained by the church, a professional society, or perhaps

were established through government regulation, but it was generally an ad hoc affair.

Unless a potential data user was already aware of the existence and location of certain

“data set,” it was extremely difficult to find and access the data.

The establishment and growth of academic and public libraries in more recent centuries

greatly improved data preservation and access. Libraries were at the forefront of new data

cataloging, indexing, and access schemes; librarians were critical data stewards. Yet the

“data” were still primarily in the form of monographs and logbooks, and, logically,

libraries focused more on books, journals, and other publications more concerned with

data analysis. (Maps may have been as readily archived as books and journals). It wasn’t

until the establishment of the World Data Centers (WDCs) in 1957-1958 that the concept

of a publicly funded facility specifically charged with providing data access and

preservation became prominent [1].

The World Data Center system originally archived and distributed the data collected

during the International Geophysical Year [1]. The data in question were generally small

in volume and certainly not digital, but the concept that an institution would focus on the

preservation and distribution of raw data as opposed to the interpretation of those data

was revolutionary. Furthermore, the WDCs were organized by disciplines such as

glaciology and meteorology. This helped reinforce an association between discipline-

specific science and data stewardship.

Since then, the number of discipline-specific data centers has grown. In the US a total of

nine national data centers were established, primarily sponsored by NOAA, DOE, USGS

and NASA [2] to archive and distribute data in disciplines such as space science,

seismology, and socioeconomics. The development of these world and national centers

made finding relevant data a little simpler. Now there was likely to be an organization

that could be queried if only by mail or telephone. If they couldn’t provide the data

directly, they were usually able to provide references to other places to look.

Local and state governments, universities, and even commercial entities have continued

the trend and established a variety of data centers, typically organized around disciplines

or subject areas as diverse as “advertising” [3] or “cancer in Texas” [4]. The Federal

government again made a significant contribution in the early 1990s when NASA

established eight discipline-specific Distributed Active Archive Centers (DAACs) to

collaboratively archive and distribute data from NASA’s Earth Science Enterprise (ESE).

In some ways the DAAC system followed the model of the distributed and discipline-

specific World and National Data Centers, and NASA typically collocated the DAACs

with already established data centers [2]. However there are some key differences in the

approach. On one hand, DAACs are intended to only archive and distribute data during

the most active part of the data life cycle. The DAACs are to transfer their data to a

permanent archive several years after each spacecraft mission in the ESE program ends,

but the details of this transfer are yet to be finalized. On the other hand, an early and
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important goal of the ESE was to make finding and obtaining Earth science data simpler

than it had been.

The DAACs are part of a larger system of remote sensing instruments and data systems

called the Earth Observing System (EOS). They are linked together through the EOS

Data and Information System (EOSDIS) Core System (ECS), which provides tools and

hardware to handle ingest, archival, and distribution of the large volumes of data

generated by EOS sensors and heritage data sources. An important component of ECS is

an electronic interface that allows users to search and access the holdings of all of the

DAACs simultaneously. This interface was initially developed as an independent client

that users would install on their own machine, but shortly after ECS development started,

the first web browsers became available. This led to the development of the EOS Data

Gateway (EDG), a web-based search and order tool. Currently the EDG allows search

and access to DAAC data as well as data located at several data centers scattered around

the world.

What is important to note about ECS and the DAACs is that it was arguably the

functional beginning of new model of data management where data archival was

geographically distributed, but search and order were centralized. It is also notable that

this was a newly comprehensive effort to acquire, archive, and provide access to a very

large volume of data but there is still no concrete plan for the long-term disposition of the

data. Both these trends—centralized access to decentralized data and inadequate planning

for long term archival—continue today. Indeed NASA is moving further away from a

data center approach with its new Strategic Evolution of Earth Science Enterprise Data

Systems (SEEDS) [12].

Of course, the World Wide Web has been a major driver in the increased decentralization

of data storage. Furthermore, improved search engines theoretically make it easier than

ever to find data. We have even heard it suggested that Google may be the only search

engine needed. General search engines, however, provide little information to help a user

determine the actual applicability or utility of the data found. Little of the information

currently available on the web has been subject to the levels of peer-review, copyediting,

or quality control traditionally done by data managers or library collection specialists

[18]. Finally, no mechanism ensures the preservation of much of the information

available via the Web. Often web sites cited in a paper are no longer active mere months

after the publication of the paper [43].

There are many efforts underway to address some of the issues inherent in distributed

Earth-science data systems including the overall Web. Some examples of centralized

search tools for distributed scientific data include:

• NASA’s Global Change Master Directory (GCMD) (http://gcmd.nasa.gov)

• T h e  D i s t r i b u t e d  O c e a n o g r a p h i c  D a t a  S y s t e m

(http://www.unidata.ucar.edu/packages/dods/index.html)
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• The Alexandria Digital Library Project (http://alexandria.ucsb.edu/)

• T h e  N a t i o n a l  S p a t i a l  D a t a  I n f r a s t r u c t u r e  ( N S D I )

(http://www.fgdc.gov/nsdi/nsdi.html)

Some of these efforts predate the World Wide Web, and some like the GCMD are strictly

search tools, while others such as the NSDI attempt (with mixed success) to provide

actual data access.

As data managers at the National Snow and Ice Data Center (NSIDC), we are primarily

concerned with Earth science data, but we should note that many of the issues we will

discuss apply to a variety of disciplines. Based on some of our experience at a session on

“Virtual Observatories” at the Fall 2003 meeting of the American Geophysical Union, it

seems that non-Earth Science related disciplines sometimes lag behind the Earth sciences

in the management of their data.  Mechanisms for simultaneously searching and

accessing data stored at multiple distributed data centers may not exist. For example, no

equivalent to the GCMD or EDG currently exists for the solar or space physics

community. This situation is rapidly changing. Numerous groups are working on virtual

observatory concepts, which in some ways are reminiscent of the EOS DAAC system

described earlier.

We should also be aware of the growth of private records management companies. It is

certainly possible for commercial entities to address some of the issues of modern data

stewardship, but very little research has been done to accurately quantify the necessary

costs of a distributed data management infrastructure. Nor have there been any significant

efforts to do a cost-benefit analysis of the various components of such a structure [17].

This is especially true in the international context, where not only is distributed data

management more challenging, but cost models become more difficult. For example,

different countries have data access and pricing policies that are rooted less in economics

than in political or philosophical issues such as the right for citizens to access government

documents (See [17] and [16] for examples.).

In the following sections, the challenges of providing distributed data discovery and

access, while adequately addressing long-term stewardship will be discussed. NSIDC's

more than 25-year history as:

• A World Data Center

• Part of a NOAA cooperative institute

• A NASA Distributed Active Archive Center (DAAC),

• NSF's Arctic System Science (ARCSS) Data Coordination Center ADCC) and

Antarctic Glaciological Data Center (AGDC)

50



• A central node for the International Permafrost Association's (IPA) Global

Geocryological Data System (GGD)

 will serve as one source of examples.

3 Long-Term Stewardship Defined

Within the data management field, “long-term” is typically defined as:

A period of time long enough for there to be concern about the impacts of

changing technologies, including support for new media and data formats,

and of a changing user community, on the information being held in a

repository[5].

Given the current rate of technological change, any data-generating project or program

with a duration of five or more years should be considered as long-term and will need to

take changes in technology into account.

Stewardship, especially data or scientific stewardship is more difficult to define. Of the

107 results recently found with a Google search of the phrase “scientific stewardship,”

very few (primarily NOAA sites, a few religious sites, and one lumber company) actually

defined what the phrase meant in their context.  These concepts are relatively new and do

not show up in standard information science dictionaries or encyclopedias.

The term data stewardship was used in the early 1990s by the Department of Defense in

DOD Directive 8320.1-M.1, which defined data administration as “the person or group

that manages the development, approval, and use of data within a specified functional

area, ensuring that it can be used to satisfy data requirements throughout the

organization” [40].

Two other relevant definitions can be found in the literature.  The first comes from the

vision statement from a workshop sponsored by NASA and NOAA which states that

long-term archiving needs to be a “continuing program for preservation and responsive

supply of reliable and comprehensive data, products, and information … for use in

building new knowledge to guide public policy and business decisions” [11].  The second

definition was presented by John J. Jensen of NOAA/NESDIS at the 2003 IEEE/NASA

Mass Storage Conference, as “maintaining the science integrity and long term utility of

scientific records” [45].

Both definitions associate scientific stewardship with data preservation as well as access

or use in the future. These dual needs are also recognized in the library and records

communities (see for example [44] and [46]). Beyond simple access to the original

science data, good science stewardship has been shown to allow future development of

new or improved products and for use of data in ways that were not originally anticipated

[11].  To support these uses however, extensive documentation is needed including

complete documentation about the characteristics of the instrument/sensor, its calibration
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and how that was validated, the algorithms and any ancillary data used to produce the

product, etc. [11] and [12].  This level of associated documentation goes well beyond the

typical metadata needs of library or records materials.

4 Data and Metadata Related Challenges

4.1 Open and Proprietary Data and Metadata Formats

The challenges of preserving information for the long term when it is stored in a

proprietary format (e.g., MS Word) have been described elsewhere [6]. Commercial

pressures do not allow companies to maintain backwards compatibility with each new

release for very long.  This leaves a very narrow window of opportunity for the

information to be migrated to a newer version of the format or a different format, with the

attendant risk of loss of functionality or information with each migration.

In the science stewardship realm this may not seem like a large concern since data are

still often stored as ASCII tables, flat binary files or one of an increasing number of

community standard formats (e.g., shapefiles, HDF-EOS 4).  However, much of the

associated information about the data - the information that will be needed decades later

to allow reanalysis or reprocessing or to allow the development of new products - may

very well be stored in a wide variety of proprietary formats (e.g., CAD files, MS Word

document).

Even when the data are stored in a non-proprietary format (e.g., CDF, net-CDF or HDF-

EOS), the data cannot be maintained forever in their original format.  Even so-called

standard formats evolve with changes in technology.  For example, much of the data

stored in the typically petabyte-scale archives of the NASA DAACs, are stored in either

HDF-EOS 2.x or HDF-EOS 5.x formats (there are no 3.x or 4.x versions).  HDF-EOS 5.x

was developed as technological changes mandated entirely new data system architectures

incompatible with HDF-EOS 2.x.  While tools are available to help users migrate data

from the 2.x version to the 5.x version, the new version is not entirely backwards

compatible. NASA is currently committed to funding maintenance of both versions [8],

but it is not clear whether maintenance will continue once the data are transferred to

another agency for long-term archival.

Format evolution can cause particular problems in the Earth sciences where it is

necessary to study long data time series in order to detect subtle changes. For example,

NSIDC holds brightness temperature and derived sea ice data from a series of passive

microwave remote sensing sensors. This is one of the longest continuous satellite remote

sensing time series available, dating back prior to 1978. NASA is continuing this time

series with a new higher resolution sensor, the Advanced Scanning Microwave

Radiometer (AMSR), aboard the Aqua spacecraft. This is an exciting new addition, but

scientists and data managers must work to tie the AMSR data into the existing time

series. Not only will there be the normal, expected issues of intercallibrating different but

related sensors, but someone will likely need to do some data format conversion. The
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currently intercallibrated historical data is available in flat binary arrays with ASCII

headers while the AMSR data is available in HDF-EOS.

Issues such as these have resulted in a call by some for the establishment of a digital

format archive [9], while others have called for conversion to a “Universal Data Format”

or other technology-independent-representation upon archival (see for example [10],

[13], and [32]). Both of these options require additional research according to a recent

NSF-DELOS report [14]. They also increase the need for good metadata describing data

format transformations and how these transformations may affect the utility of the data.

4.2 Which Standards and What Metadata?

One of the lessons learned from the ESE experience is that “community-based standards,

or profiles of standards, are more closely followed than standards imposed by outside

forces” [12].  Developers of the ECS system recognized that having all of the data from

the entire suite of satellites and sensors in the same format would simplify user access.

After consideration of several potential formats, NASA settled on the HDF-EOS, a

derivative of the HDF format standard [8].  A variety of user and producer communities

rebelled.  As a result, while much of the data stored in the ECS system is stored in HDF-

EOS format, there are a number of products, notably the GLAS data stored at NSIDC,

that are not in HDF-EOS format.

In addition to the recognition that user community involvement is necessary for

successful standards development and adoption, the other important concept from the

quote above is the notion of a standards profile, “a specific convention of use of a

standard for a specific user community” [12].  It is typically not enough to say that a

particular format standard is being used (e.g., HDF or netCDF); it may be necessary to

define specific usage conventions possibly even content standards acceptable to a given

user community in order to ensure interoperability.   These specific conventions or

profiles may vary from community to community.

Probably one of the most overworked expressions in the IT industry is “Which standards?

There are so many to choose from.” It is ironic that not only are there so many standards

of a type to choose from; but also that there are so many types of standards about which

one must make choices.  In the data stewardship realm it is not enough to think about data

preservation and data access format standards; one must also think about standards for

metadata format and content, documentation format and content, interoperability, etc.

For metadata, the question is compounded further by the need to distinguish the type of

metadata under discussion, e.g., metadata for data discovery, data preservation, data

access, etc.

The Open Archival Information System (OAIS) Reference Model [5] provides an

information model (see Figure 1) that describes the different kinds of information needed

in order to ingest, preserve and provide access to digital or analog objects.  The model

appears to be gaining some acceptance in the library and archive communities. It is based
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on the concept of an Information Package that can be found by examining its associated

Descriptive Information. The components of the Information package itself are:

Figure 1: Information Package Components and Relationships [19]

• Content Information-containing both the data object to be preserved as well as

enough Representation Information for a targeted user community to understand the

data object’s structure and content.  For science data this would include identification

o f  t h e  d a t a  f o r m a t  a n d  a n y  a s s o c i a t e d  p r o f i l e .

Of the two components, structure and content, content is more difficult to obtain.  The

science community has become so specialized that community-specific jargon and

underlying assumptions are pervasive.  Capturing and documenting these, so that

others outside that very small peer group can understand and use the data, is

challenging.

In a very distributed environment, such as the virtual observatories of the future, there

will be many thousands or millions of Data Objects preserved in many different

places, all of which have the same data format or even the same standard profile.  It

would be impractical to store the same format information with each object.  This

may bolster the argument for establishing centralized data format repositories [9], but

would require considerable coordination to be successful.

• Preservation Description Information (PDI)-containing the information needed to

preserve the object for the long-term.  The PDI is comprised of 4 components:

o  Provenance, or the history of the Data Object.  In the science arena, this

involves tracking the processing history, what input products were used, what

version of which algorithms were used, what ancillary information was used

for calibration and validation, as well as a host of other instrument-related

information.  It also includes information about when and where the data were

created, processed, and acquired; as well as who was responsible for their

creation and what changes have taken place since.
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o  Reference Information-including information needed to identify this object

from the universe of other objects.  Much has been written about the need for

persistent and unambiguous identifiers (see for example [32], [34], and [15])

and various communities have proposed standards for these (see for example

[33] and [13]).  A key finding is that in a distributed environment a name

issuing authority is needed to prevent naming collisions [32]. In the science

community, a hierarchy of identifiers is typically needed.  For example, in the

ECS system, Earth Science Data Types (ESDT’s) are used to identify a data

set, or class of objects, while granule ids are used to identify specific objects

within the set.

o  Fixity Information-documenting the methods used to ensure that the object

hasn’t been changed in an undocumented manner.  This typically includes

Cyclic Redundancy Check (CRC) values, digital signature keys, etc.  This

topic is addressed separately later in this paper.

o  Context Information-documenting why this object was created and how it

relates to other objects.

While the OAIS reference model discusses the types of metadata or information that must

be gathered in order to preserve an object, it leaves the actual definition of that metadata

to the individual archive or archive group.  Several groups within the library community

have independently developed their own preservation metadata specifications (see [21],

[22], [23], and [24]) and have recently come together under the joint auspices of the

Research Libraries Group (RLG) and the Online Computer Library Center (OCLC) to

develop an OAIS-based metadata framework that “could be readily applied to a broad

range of digital preservation activities” [25].

While providing a useful starting point for the science community, the OCLC/RLG

framework is not adequate for preserving science data.  The science community is

typically more interested in preserving information about how the data were created than

in preserving any particular presentation mechanism.  This is to be expected given the

different kinds of uses to which patrons of libraries and science users put the materials

accessed.  Typically a library patron expects to experience the material using his or her

senses; to read, listen to, touch, or watch; but not to transform the materials accessed.

Scientists typically access data so that it can be transformed, analyzed, used as an input to

a model or new product, compared with other data, etc.  Changes in presentation format

over time as technology, programming languages, and visualization tools change, are not

that important – the important things are the original bits and their meaning.

In the earth science realm probably the most relevant metadata standard is the “Content

Standard for Digital Geospatial Metadata” established by the Federal Geographic Data

Committee (FGDC) [19]. President Clinton mandated that federally funded geospatial

data (i.e., most Earth science data including ESE data) adhere to the FGDC standard in an

11 April 1994 executive order [20]. The FGDC standard “was developed from the
perspective of defining the information required by a prospective user to determine the

55



availability of a set of geospatial data; to determine the fitness and the set of geospatial
data for an intended use; to determine the means of accessing the set of geospatial data;
and to successfully transfer the set of geospatial data” [19]. As such, there is some but not
complete overlap with the kinds of metadata called for by the OAIS reference model.
Much of the preservation metadata called for by the OAIS model is not part of the FGDC
standard.

In the international standards realm, the equivalent to the FGDC standard is the ISO

19115 standard [26].  Like the FGDC standard, the ISO standard is meant to facilitate,

discovery, assessment for use, access and use and, like the FGDC standard, does not

address much of the preservation metadata of the OAIS reference model. The FGDC has

developed a draft “cross-walk” between the FGDC and ISO 19115 standards which will

help FGDC-compliant users also become ISO 19115 compliant users.

Both the FGDC and ISO 19115 standards are content standards, not implementation

standards, yet organizations must choose implementation options.  Consensus seems to

be building that Extensible Markup Language (XML) should be the implementation

standard for metadata. ISO Technical Committee 211 is in the process of developing an

UML implementation standard for the ISO 19115 metadata standard that will include an

associated XML schema.  XML is also the recommendation of the National Research

Council [2].

4.3 Preservation vs. Access

Users want data in formats that are easy to use. The desired format may be a community-

based standard, or it may be a format that is compatible with other related data sets.

Furthermore, our experience at NSIDC shows that users usually need spatial or temporal

subsets of large collections and may need to combine several products.  They may also

need the data in a different grid or projection than the original data. In other words, the

utility or essence of science data is not strongly associated with any particular access

format. Indeed, many different formats, grids, and projections may need to be supported

at any given time. This is significantly different from other disciplines concerned with

digital preservation where it is often essential to preserve the essence of the original

experience for multimedia digital objects such as movies, applications, or interactive web

sites. In the Earth science community it makes more sense to consider preservation and

access formats independently. Access formats are likely to change quickly over time,

while preservation formats should be more stable.

There are similar issues with preservation and access metadata. There are advantages to

preserving the metadata with the actual data (see section 4.4), but much of the metadata is

only relevant to the archivist. The preservation-specific metadata should probably be

separated from the data upon delivery to the user to minimize user confusion.

Some have called for completely separate storage of preservation and access data [13].

However, storage of multiple copies of the data is unaffordable with large data sets or

when there are multiple access formats.  In many cases, the issue may be how to afford

preservation of even a single copy of the data! There is some agreement that the best
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CD contained over 50 data sets and nearly 100 references to other data sets held by

different “nodes” of the GGD system. Unfortunately, funding for the GGD did not

continue past 1998. It wasn’t until 2002, when a new initiative started to create an

updated version of the CD (now a three CD set [42]), that any maintenance of the data

from the 1998 version resumed. Regrettably, dozens of the distributed or “brokered”

products were no longer readily available. NSIDC has plans to try and track down or

“rescue” some of these data sets, but the four- to five-year time lag and the globally

distributed nature of the data sets will make it very challenging. This illustrates the need

for nearly constant tracking of distributed data to ensure its continued availability, or a

clear and usable means (with incentives) for providers to provide updates to any central

access point.

4.5 Data Security and Integrity

Ultimately, keeping track of data and metadata becomes an issue of data integrity.

Scientists need to trust the validity of the data they use. They need to know that the data

came from a scientifically reputable source and that the data have not been corrupted in

any way.

Scientific integrity is an ill-defined concept, but it is rooted in the scientific method.

Experiments must be repeatable. Results from experiments should be published in peer-

reviewed literature. The data and information used in the experiment must be specifically

acknowledged and generally accessible when possible.  Traditionally this is handled in

the literature through a system of formal citations. But while methods for citing

information sources are well established and traceable, methods for citing data sources

are more variable. Historically, with small non-digital data sets, the data may have been

published directly in a journal or monograph that could specifically be cited. This was not

an entirely consistent process, though, and as data sets have grown, authors have adopted

different methods for acknowledging their data sources. Some authors may provide a

simple acknowledgement of the data source in the body of an article or the

acknowledgements section. Other authors may cite an article published by the data

provider that describes the data set and its collection.

As publishers of data, we at NSIDC have found these historical approaches lacking.

General data acknowledgements are difficult to trace, are often imprecise, and sometimes

do not acknowledge the true data source. For example, an acknowledgement of

“NSIDC’s SSM/I sea ice data” could actually refer to one of several different data sets

and it makes no reference to the actual scientists who developed the sea ice algorithm.

Citing a paper about the data is better, but in many cases such papers may not exist, they

may only describe a portion of the data set, or their description may not be relevant to the

new application of the data. In any case, it is not clear how to actually acquire the data—a

necessary step if an experiment is to be repeated. We recommend that users cite the

actual data set itself, much as they would a book or journal article. The “author” is

typically the data provider or the person who invested intellectual effort into the creation

of the data set (e.g., by creating an algorithm), while NSIDC or other archive that
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CD contained over 50 data sets and nearly 100 references to other data sets held by

different “nodes” of the GGD system. Unfortunately, funding for the GGD did not

continue past 1998. It wasn’t until 2002, when a new initiative started to create an

updated version of the CD (now a three CD set [42]), that any maintenance of the data

from the 1998 version resumed. Regrettably, dozens of the distributed or “brokered”

products were no longer readily available. NSIDC has plans to try and track down or

“rescue” some of these data sets, but the four- to five-year time lag and the globally

distributed nature of the data sets will make it very challenging. This illustrates the need

for nearly constant tracking of distributed data to ensure its continued availability, or a

clear and usable means (with incentives) for providers to provide updates to any central

access point.

4.5 Data Security and Integrity

Ultimately, keeping track of data and metadata becomes an issue of data integrity.

Scientists need to trust the validity of the data they use. They need to know that the data

came from a scientifically reputable source and that the data have not been corrupted in

any way.

Scientific integrity is an ill-defined concept, but it is rooted in the scientific method.

Experiments must be repeatable. Results from experiments should be published in peer-

reviewed literature. The data and information used in the experiment must be specifically

acknowledged and generally accessible when possible.  Traditionally this is handled in

the literature through a system of formal citations. But while methods for citing

information sources are well established and traceable, methods for citing data sources

are more variable. Historically, with small non-digital data sets, the data may have been

published directly in a journal or monograph that could specifically be cited. This was not

an entirely consistent process, though, and as data sets have grown, authors have adopted

different methods for acknowledging their data sources. Some authors may provide a

simple acknowledgement of the data source in the body of an article or the

acknowledgements section. Other authors may cite an article published by the data

provider that describes the data set and its collection.

As publishers of data, we at NSIDC have found these historical approaches lacking.

General data acknowledgements are difficult to trace, are often imprecise, and sometimes

do not acknowledge the true data source. For example, an acknowledgement of

“NSIDC’s SSM/I sea ice data” could actually refer to one of several different data sets

and it makes no reference to the actual scientists who developed the sea ice algorithm.

Citing a paper about the data is better, but in many cases such papers may not exist, they

may only describe a portion of the data set, or their description may not be relevant to the

new application of the data. In any case, it is not clear how to actually acquire the data—a

necessary step if an experiment is to be repeated. We recommend that users cite the

actual data set itself, much as they would a book or journal article. The “author” is

typically the data provider or the person who invested intellectual effort into the creation

of the data set (e.g., by creating an algorithm), while NSIDC or other archive that
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distributed the data might be considered the publisher. It is also crucial to include

publication dates to distinguish between different versions of related data sets. In any

case, we try and provide a specific recommended citation for every data set we distribute.

Although we have met some sporadic resistance from occasional providers who wish

only for their papers to be cited, this approach has become broadly accepted. It is the

approach specifically recommended by the International Permafrost Association ([41],

[42]), and has generally been accepted by the other NASA DAACs.

This formal citation approach works well when there is a clear and reputable data

publisher even in a distributed environment. But the distributed environment may provide

additional challenges, especially if data sources are somewhat ephemeral or hard to

identify. For example, in a peer-to-peer system, the access mechanism needs to

specifically identify the different peers and possibly some assessment of their stability.

This is somewhat different than peer-to-peer systems in other areas such as music where

users generally don’t care where the music came from as long as it is the piece they

wanted. With the rise of electronic journals we have also heard informal discussion of

including the actual data used in the publication itself. Although this approach obviously

includes many of the same data preservation challenges already discussed, it is an

intriguing concept worthy of further exploration.

Once the scientific integrity of a data set has been assured, assurance is needed that the

data received is what was expected. Several authors discuss the use of public/private key

cryptography and digital signatures as methods for ensuring the authenticity of the data

(see for example [35] and [36]).  Lynch points out that we know very little about how

these technologies behave over very long times and that, as a consequence, information

about evolution of these technologies will likely be important to preserve [37].

For a scientist to be able to trust that the data have not been changed the scientist must be

able to trust that the preservation practices of the source of the data are adequate: that

archive media are routinely verified and refreshed, that the facilities are secure, that

processes to verify and ensure the fixity of the data are operational, that geographically

distributed copies of the data are maintained as a protection against catastrophe, and that

disaster recovery plans and procedures are in place.  To verify these practices, the

RLG/OCLC Working Group on Digital Archive Attributes suggests that a process for

certification of digital repositories be put in place [34]; while Ashley suggests that

administrative access to data and metadata be “subject to strong proofs of identity” [36].

Once again, a distributed data environment may make implementing these suggestions

more difficult.

4.6 Long-Term Preservation and Technology Refresh

A continual theme in this paper is how the speed of technological change presents a

major challenge for preserving data over the long term.  As a recent report by the

National Science Foundation and the Library of Congress puts it “digital objects require

constant and perpetual maintenance, and they depend on elaborate systems of hardware,
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data user community. A good data manager, equipped with the right tools, should be

working closely with the data provider to uncover any known limitations in the data.

For example, it may be self evident to developers of sea ice detection algorithms for

passive microwave remote sensing that their methodology is well-suited to detection of

trends in ice concentration over time but ill-suited for representing precise local ice

conditions on a given day. This may not be apparent to a biologist who uses a near-real

time passive microwave derived product to associate sea ice conditions in the Beaufort

Sea with polar bear migration. While this is an extreme example, it highlights the need

for scientists and data managers to work closely together to carefully document and track

new and potentially unexpected uses of the data. It is also important to realize that the

risks of inappropriate data applications could increase over time.

Of course data can also be improved. New algorithms, new calibration methods, and new

instruments may be developed. In Earth science in particular, it is important to detect

variability over long time periods. This means that different instruments must be

intercallibrated to ensure a consistent time series, i.e. we need to be able to ensure that

any changes we detect in a data stream result from actual geophysical processes not just

changes in instruments or algorithms. This again requires collaboration between the data

manager and the scientist. This is certainly possible in distributed environments, but

mechanisms should be established to ensure that information about data harmonization

and improvements are readily available to users. Traditionally, this was the role of the

data steward or data manager (see, for example, [29]). It is less clear how this would

work in a distributed environment, but knowledge bases and data mining systems are

likely to contribute.

On a related note, to ensure maximum scientific understanding of an issue, data and

support services need to be readily available to as many users as possible [11]. This is

necessary to ensure all possible scientific ideas are explored and that scientific

experiments can be duplicated. The necessary broad access may be better realized in a

distributed data model, but only if the challenges in section four are addressed. Again this

will require close interaction with the users.

Historically, NSIDC has addressed these scientific issues by working closely with its data

providers and by having scientific data users and developers on staff. This becomes a less

practical approach in a distributed data environment where data may be held and

distributed by individuals and institutions with varying levels of scientific and data

management expertise. It will become increasingly important to formally address the

relationship of data managers and scientists as new distributed data management models

are developed.

5.2 Decisions, Decisions, Decisions - Deciding What Data to Acquire

and Retain

One of the most difficult decisions in data archival is which data to acquire and keep and

which data to throw away. Although, there is still no effective business model that
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demonstrates the costs and benefits of long-term data archival [15], it is clearly

impractical to keep all data for all time. That said, we need to recognize that many data

sets often have unexpected future applications (see [11] for examples). A simple

approach would be to archive a very low level of the data along with the necessary

algorithms to process the higher level products. However, this must be viewed only as a

minimum since it does not allow for the necessary simple and broad access described

above.

It is probably not possible to describe any one infallible data acquisition and deposition

scheme. However, any data stewardship model must explicitly include a method for

development of such a scheme for different types of data and user communities. These

schemes must explicitly include knowledgeable and experienced users of the data who

are directly involved in generating new products and data quality control [11].

5.3 Upfront Planning

Our experience at NSIDC has shown that by working with the scientists and data

providers early in an experiment or mission, ideally before any data are actually

collected, we can significantly improve the quality and availability of the data. Most

scientists can probably think of a field campaign where the data are no longer available.

NSIDC worked to avoid this problem by working closely with the investigators

conducting the Cold Land Processes field experiment in the Colorado Rocky Mountains

during the winter and spring of 2002 and 2003 (see [30]). Not only was NSIDC involved

in the planning of the data collection, but also provided data technicians who worked

closely with field surveyors during the experiment. These data technicians learned the

data collection protocol with the surveyors, helped collect some of the data, and entered

the data into computers the night after they were collected. By learning the protocol and

immediately entering the data, technicians were able to identify missing values and

anomalies in the data and run some automated quality control checks. They were then

able to follow up with the surveyors soon after they collected the data to correct specific

problems and to improve later data collection. Technicians were also able to provide the

data to the lead scientists for immediate assessment. Overall, this led to a 10 to 20 percent

improvement in data quality [31].

NSIDC has had similar experience with recent satellite remote-sensing missions. NSIDC

is the archive for all the data from NASA’s Advanced Microwave Scanning Radiometer

(AMSR) and Global Laser Altimetry System (GLAS). Although NSIDC was not directly

involved in the acquisition of the data, it did work closely with the mission science and

instrument teams well before the instruments were even launched. This allowed the data

managers to have a much greater understanding of the engineering aspects of the data and

the algorithms used to produce the higher-level products. The result is much better

documentation and much earlier data availability. Data from both of these missions were

available to the public only months after launch, in contrast to years with some historical

systems where data managers were not involved until well after their launch (e.g, sea ice

data from SSM/I).
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There is nothing inherent about distributed data systems that should preclude early

involvement of data managers, but again this is something to consider in the design of

those systems. Furthermore, data manager involvement could be more difficult if

traditional data management organizations are not directly involved in the distributed

data system.

6 Conclusions

The scientific method requires that experimental results be reproducible. That means the

data used in the original experiment must be available and understandable.  Furthermore,

reexamination of an early data set often can yield important new results.

Maintaining access to and understanding of scientific data sets has been a challenge

throughout history. The trend to a more geographically distributed data management

model may improve data access in the short run but raises additional challenges. We

should be able to address many of these challenges by developing new tools and data

management systems, but we must not forget the human component. Experience and a

review of the known data management issues show that we achieve the greatest success

in long term data stewardship only when there is a close collaboration between data

providers, data users, and professional data stewards. As we move forward, we need to

ensure that new technologies and new data archive models enhance this collaboration.
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Abstract 

The National Archives and Records Administration (NARA) is the nation’s recordkeeper. 
NARA is a public trust that safeguards the records of the American people, ensuring the 
accountability and credibility of their national institutions, while documenting their 
national experience.  Today NARA holds an estimated 4 billion records nationwide.  The 
Archives consists of the permanently valuable records generated in all three branches of 
the Federal Government.  These record collections span this country’s entire experience, 
across our history, the breadth of our nation, and our people. While paper documents 
presently predominate, NARA holds enormous numbers of other media, such as reels of 
motion picture film, maps, charts, and architectural drawings, sound and video 
recordings, aerial photographs, still pictures and posters, and computer data sets. It is that 
last medium, the electronic records, that is the fastest growing record keeping medium in 
the United States and elsewhere in the world.  Since 1998, NARA has established key 
partnerships with Federal Agencies, state and local governments, universities, other 
national archives, the scientific community, and private industry to perform research 
enabling better understanding of the problems and the possibilities associated with the 
electronic records challenge. The challenge of electronic records encompasses the proof 
and assurance of records authenticity and assurance of record persistence and ready 
access to records over time. 

1.  Background/General Project Description 
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“Electronic records pose the biggest challenge ever to record keeping in the Federal 
Government and elsewhere.  There is no option to finding answers…the alternative is 
irretrievable information, unverifiable documentation, diminished government 
accountability, and lost history.”  
 

John Carlin, The Archivist of the United States 

 
The National Archives and Records Administration (NARA) is the nation’s recordkeeper. 
NARA is a public trust that safeguards the records of the American people, ensuring the 
accountability and credibility of their national institutions, while documenting their 
national experience. Pursuant to legislation codified under Title 44 of the United States 
Code the Archivist of the United States has authority to provide guidance direction and 
assistance to Federal officials on the management of records, to determine the retention 
and disposition of records, to store records in centers from which agencies can retrieve 
them, and to take into the archival facilities of the National Archives and Presidential 
libraries, for public use, records that he determines “to have sufficient historical or other 
value to warrant their continued preservation by the United States Government."  (44 
U.S.C. 2107)  Similarly, under the Presidential Records Act, when a President leaves 
office, the Archivist of the United States assumes responsibility “for the custody, control, 
and preservation of, and access to, the Presidential records of that President”.  Both the 
Government and the public rely on NARA to provide this and subsequent generations of 
the American public with access to extraordinarily high accretion rate, increasingly 
diverse, and arbitrarily complex collections of historically valuable federal, presidential 
and congressional electronic records collections. 
The technology challenge confronting NARA is repeatedly confirmed as among the 
President’s research priorities.  In the supplement to the President’s budget for fiscal year 
2004,  The National Science and Technology Council expressly acknowledges that 
“R&D in advanced technologies that enable preservation and utility of electronic 
information archives…,” and “…digital archives of core knowledge for research and 
learning”  is “far from finished.”  Especially prominent is the Council’s explicit 
identification of “….substantial technical issues – such as interoperability among file 
formats, indexing protocols, and interfaces; data management, storage and validation; …  
and long term preservation – that impede development of digital libraries…” Similarly 
noted is research enabling agencies to move “…toward two ambitious goals: quick, easy, 
and secure on-line access for citizens to government services and information, and radical 
reduction in internally duplicative record-keeping, ... through coordinated development of 
IT standards and procedures...” [1] 
 
Experts predicted in FY2003 that electronic records volumes will swell by orders of 
magnitude over this decade, presenting enormous challenges for society along with 
unprecedented opportunities for U.S. advanced research and technological innovation.”, 
…fused with requirements for… “technologies for rapid mining, filtering, correlating and 
assessing of vast quantities of heterogeneous and unstructured data”, and… “tools for 
collecting, archiving and synthesis.” [2] 
 
Similarly, among the president’s FY2002 research priorities: 
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“Strategies to assure long-term preservation of digital records constitute another 
particularly pressing issue for research. As storage technologies evolve with increasing 
speed to cope with the growing demand for storage space, the obsolescence of older 
storage hardware and software threatens to cut us off from the electronically stored past.”  
[3] 
 
The Archivist is authorized by law to “conduct research with respect to the improvement 
of records management practices and programs.” [44 U.S.C Section 2904(c)(2)].    Since 
1998, NARA has established key partnerships with Federal Agencies, state and local 
governments, universities, other national archives, the scientific community, and private 
industry to perform research enabling better understanding of the problems and the 
possibilities associated with the electronic records challenge.  
 

NARA’s Key Research Partners 

 

 National Science Foundation (NSF) 

 San Diego Supercomputer Center (SDSC) 

 University of Maryland (UMd) 

 Georgia Tech Research Institute (GTRI) 

 U.S. Army Research Laboratory (ARL) 

 National Computational Science Alliance (NCSA) 

 National Institute of Standards of Technology (NIST) 

 National Nuclear Security Administration (NNSA) 

 National Aeronautics and Space Administration (NASA) 

 U.S. Department of Defense (DOD) 

 Library of Congress (LC) 

 International Research on Permanent Authentic Records in Electronic Systems 
(InterPARES)  

 Digital Library Federation (DLF) 

 Global Grid Forum (GGF) 
 
NARA’s ERA Program includes ongoing sponsorship, support, and collaboration in 
technology research activities relevant to developing and sustaining the systematic 
capability for transfer, preservation, and sustained access to electronic records.  ERA 
must be dynamic in response to continuing technology evolution, ensuring that electronic 
records delivered to future generations of Americans are as authentic decades in the 
future as they were when first created.   
 
Among the findings presented in the report of the Committee on Digital Archiving and 
the National Archives and Records Administration of the Computer Science and 
Telecommunications Board (CSTB) for the National Research Council of the National 
Academies are findings that while no turnkey system, application, or product exists in the 
marketplace which meets NARA’s requirements, the system can and should be built. [4] 
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2. Program Status 

In response to the digital records challenge, Congress, in November 2001, acting through 
the Treasury and General Government Appropriations Act {P.L.107-67}, approved the 
fiscal 2002 budget that included $22.3 million for Electronic Records Archives (ERA) 
Program. Similarly, in January 2003, Congress, acting through the Consolidated 
Appropriation Resolution, 2003 {P.L.108-7}, approved the fiscal 2003 budget that 
included $11.8 million for the Electronic Records Archives (ERA) Program. At the time 
of this writing, and while the final appropriations have not passed, both the House  of 
Representatives and the Senate have agreed to fund the ERA Program at the $35.7M 
level in the President’s FY2004 request. The official Request for Proposal (RFP) for the 
ERA system was released to the public on December 5, 2003.   At the time of the RFP 
release, proposals from industry were required to be submitted to NARA by January 28, 
2004.  The ERA program schedule calls for up to two contract awards to be made by 
mid-2004.   
 
NARA has structured the ERA procurement to fundamentally be a challenge to industry 
to propose innovative ways to address the challenges represented by the large number 
and variety of electronic records generated and used by the Federal government.  The 
ERA procurement strives to define the electronic records challenge without prescribing 
implementations or techniques with which to address the issues.  Again, NARA wants to 
engage industry in crafting long term responses to the various technical and operational 
issues that ERA represents.  This paper goes on to explore some of the archival, 
technical, and operational issues that the ERA program sees as important to the success 
of ERA.     

3. Goals, Issues, and Challenges for Electronic Records - Persistence, obsolescence, 

access over time 

Today NARA holds in the National Archives of the United States and the Presidential 
Libraries an estimated 4 billion records nationwide.  The archives consist of the 
permanently valuable records generated in all three branches of the Federal Government, 
supplemented with donated documentary materials. [5] 
 
These records span this country’s entire experience, across our history, the breadth of our 
nation, and our people.  Not surprisingly, with the passage of time, the medium of the 
records of the United States has become diverse in format.  While paper documents 
presently predominate, NARA holds enormous numbers of  

 reels of motion picture film,  

 maps, charts, and architectural drawings,  

 sound and video recordings,  

 aerial photographs,  

 still pictures and posters, and 

 computer data sets. [6] 
 
It is that last medium – computer data sets - the electronic records, that is the fastest 
growing record keeping medium in the United States and elsewhere in the world.  
According to the How Much Information? 2003 study from the University of California 
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Berkley School of Information Management and Systems, released in October 2003, the 
worldwide production of original information stored digitally on magnetic media has 
grown by 80% in the time elapsed between the 1999 and 2002 samples.  The upper 
boundary study volume estimate in that category of information for 1999 was 2.8 Peta 
Bytes and for 2002 – 4.99 Peta Bytes. [7] 
 
The digital (electronic) storage of information –has been growing in proportion to the rise 
in creation and use of information in general.  There is no consensus optimal method for 
the long term preservation of electronic records.  A number of approaches are being used 
in the industry singly and in combination.  Each of the approaches brings with it its own 
cost, as well as operational and reliability concerns.  The larger the size of the electronic 
records holdings, the more important it is to carefully select and design the preservation 
approach. 
 
Preserving electronic records serves the same fundamental purpose as preserving any 
other type of record: to enable the records to continue to provide evidence and 
information about the decisions, acts, and facts described in the records with the same 
degree of reliability as when the record was created.  However, the process of preserving 
electronic records is substantially different than the preservation of traditional, non-
electronic records.  Traditional records are aptly termed “hard copy” in that the 
information that the record contains is inscribed in a hard, indissoluble manner on a 
physical medium, and the physical inscription conveys the information the record is 
intended to provide.  Therefore, preservation traditionally focused on the physical object.  
However, an electronic record is inscribed on a physical medium as a sequence of binary 
values which must always be translated into a different form – the form of a record – in 
order to communicate the information the record was meant to convey.  Therefore, 
preserving an electronic record requires maintaining the ability to reproduce that record 
from stored data.  While the preservation of a paper record can be deemed successful if 
that record remains physically intact in storage, the success of a process of preserving an 
electronic record can only be verified by translating the stored bits into the form of the 
record.  It is the result of this reproduction, not the stored bits, that literally is the 
electronic record.  If the wrong process is applied, or if the process is not executed 
correctly, the result will not be an authentic copy of the record.  Over time, reproducing 
an electronic record is challenging because the conventions for representing information 
in digital form change along with hardware and software.  Newer systems may not be 
able to process older formats, or may do so incorrectly. [8]    
 
Archiving of electronic records brings with it an increased challenge of authenticity of 
the record and a more difficult burden of proof of that authenticity.  For the ERA 
program, electronic record authenticity is defined as the property of a record that it is 

what it purports to be and has not been corrupted.  Given the legal, historical, and 
cultural significance of national or institutional record holdings, authenticity of the 
records is essential.  Establishing authenticity of a paper, photographic negative, or other 
physical medium-based record has historically been accomplished by establishing that the 
record itself is, or is based on, an original via the proof that the medium of the record (or 
the medium of the basis record) is the original and there is a clear chain of custody 
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associated with the record.  Stringent requirements assigned to electronic record 
collections to support a continuing burden of proof relates to the attainment of criteria for 
authenticity over time. Electronic records present special challenges with respect to the 
proof of record authenticity as the record is preserved over time due to the both increased 
risk of corruption of the record when it exists in digital form. 
 
Records are being created in progressively larger volumes through the use of electronic 
hardware and the associated software applications.  Some of the records are traditional 
textual or graphic documents that could have been originated with the use of pen and 
paper.  At least in theory, their content can be preserved in hard copy.  The bulk of them, 
however, are in most respects indelibly tied to the technology that produced them, such as 
the contents of data base systems, interactive Web pages, geographic information 
systems, and virtual reality models. [9]   These later types of electronic records need to be 
preserved in electronic form in order to preserve the essential properties of the record 
other than pure content - the context, structure, and behavior.  Whenever a mix of 
technologies are involved in the creation, maintenance, and presentation of the record, 
preservation is far more involved than the preservation of the precise sequence of bits 
constituting instrument reading, an ASCII text, or a bitmap graphic document. 
 
All of the electronic records in lesser or greater degrees rely for access on the use of 
technologies that arise and evolve rapidly and just as rapidly become obsolete.  
Computing platforms on which the records are created, preserved, or examined, 
communication infrastructures interconnecting these platforms, data recording media, 
and, perhaps most importantly, data recording formats are all subject to rapid 
obsolescence while the records themselves must persist.   
 
Preservation approaches for electronic records are multifold and can be broadly 
categorized in following areas of concern: 

 Media  

 Hardware Technology 

 Software Technology, including record formats 

 Archival:  provenance, authenticity, context, structure and appearance.  
 

A significant complicating factor in preservation of an electronic record is the necessity 
to preserve some of the associated linkages to other records.  The loss of such linkages 
may, at best, lead to the loss of context or, at worst, render the record itself unreadable.    
 
Preservation of electronic records is the end-to-end process which enables re-production 
of an authentic copy of the record.  To assure that reproduction preservation of electronic 
records extends beyond protection of the record physical medium to protection of record 
accessibility and assuring record authenticity over time. Assuring persistence of records 
means ensuring that the records are not only readable but also intelligible after the 
passage of time.  Assuring record authenticity means ensuring that the records are not 
inadvertently or deliberately altered or corrupted over time and that the authenticity can 
be adequately proven. [10]   
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Finally, a fundamentally important aspect of ensuring that the records are accessible over 
time is appropriate processing of the records as they enter the electronic archive with 
respect to establishing appropriate searchable archival structures and relationships and 
extraction and storage of associated metadata. Preservation methods which maintain 
dependencies of records to obsolete technologies tend to increasingly constrain access 
over time.  Continuing general public access to old and obsolete technologies may not be 
possible except in highly limited environments or circumstances. In example, general 
public access to an emulator appropriate to enable reliable future rendition of electronic 
records created in the technology of an early 1990’s proprietary geographic information 
system in the hypothetical context of  2020 vintage computing is not presently assured.   

4. System Characteristics and Drivers 

The ERA system, because of its size, scope, ingest and access loads, and commitment to 
long term preservation and servicing of government records, will require deployment and 
design approaches that support its unique nature and mission goals.  When designing and 
deploying ERA, NARA must take a long term view for the system’s operation and its 
required scalability, reliability, and cost effective operations.  This long term vision will 
accommodate the use of outsourcing of potential processing and hosting services while at 
the same time ensures NARA’s stewardship of the records trusted to it.   

4.1  Design and Deployment Goals 

There are certain assumptions and drivers that sculpt the deployment approach for ERA.  
These assumptions and design drivers are collectively considered the design and 
deployment goals for the ERA program.  These goals include: 

 NARA must own and control at least one set of all holdings of electronic records 
entrusted to it.  This is required for protection of the records and fulfillment of 
NARA’s mission to ensure long term preservation and access to the government’s 
records. 

 The ERA system is one of NARA’s contributions to the Federal Enterprise 
Architecture (FEA) and fulfills a critical role in the development and deployment 
of NARA’s own Enterprise Architecture (EA).   

 The design and deployment vision for ERA must allow for the contracting out of 
record processing and access support, if NARA chooses to exercise that option in 
the future.  The contracting out of record services must be done within the context 
of NARA’s mission and ultimate responsibility for the integrity of the records. 

 Minimize government ownership of equipment and facilities.  This desire must be 
balanced against NARA’s stewardship of the records and commitment to FEA 
support. 

 Allow industry and academia to provide value added services on record holdings.   

 Produce a highly reliable system design.  Characteristics of such a design include: 
o Avoidance of single point/site of failure.   
o Graceful performance degradation of the system when failures occur 
o Maintain system operations in face of remedial maintenance (RM), 

preventative maintenance (PM), and planned upgrades/changes 
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4.2  System Design Drivers 

In addition to the deployment goals, the design and deployment of ERA must take into 
account certain architectural demands and aspects of the ERA record preservation 
domain itself.  These drivers must be accommodated in any deployment and design 
strategy for the ERA system.  These drivers include:    

 The size of the ERA record holdings.  ERA permanent records holdings are 
projected to be in excess of 100 PBs of data 12-15 years after deployment, with 
continued growth in holdings in subsequent years.  The sheer volume of data that 
must be accommodated, as well as its associated access loads, is a huge driver that 
must be accounted for in the ERA architecture.  Architectural concepts including 
distributed deployment(s), load balancing techniques, and multiple sources for 
access to high demand records are applicable to the holdings size aspect of ERA.     

 Insuring the integrity of the record holdings.  The records must be protected from 
loss, alteration, or the lack of access capability over time.  Appropriate security 
and accommodation of timely backup of holdings with subsequent restoration of 
access are techniques that are required in this area. 

 The evolutionary nature of the ERA system.  This aspect is most pronounced in 
two areas:   

- Changes to the Persistent Preservation approaches used for records.  Over 
time electronic records will need to be stored, represented, and accessed in 
different ways given the forward march of computer technology and the 
rapid obsolescence of formats and techniques. 

- Independent of the record preservation techniques, the general 
infrastructure and support technologies used in ERA will need to be 
updated and upgraded over time.  Technology insertion into the ERA 
design will be imperative. 

 The heterogeneity of assets in ERA will complicate storing and providing access 
to the assets, as well as preserving them.  The scope of this issue can be 
appreciated by considering that ERA records can be classified via three different 
attributes.  

o Record Types (RTs) – Any record will be classified according to its 
intellectual format.  Examples of record types include letters, ledgers, 
maps, reports, etc. 

o Data types (DTs) – A data type is a set of lexical representations for a 
corresponding set of values.  The values might be alphabetic characters, 
numbers, colors, shades of grey, sounds, et al.  The lexical representation 
of such values in digital form assigns each value to a corresponding binary 
number, or string of bits.  A data type may be simple, such as the ASCII 
representation of alphabetic characters, or composite; that is, consisting of 
a combination of other data types.  An electronic record consists of one or 
more digital components; that is, strings of bits each of which has a 
specific data type. 

o Varied classes/collections of holdings – Records of the same RT and DT 
may still belong to different record series or collections, which further 
define the nature of the record.  Examples of high level collections or 
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series could include particular Presidential collections, Federal record 
series, and potentially record series in Federal Record Centers (FRCs).   

5. Conclusion 

This paper has provided an overview of the NARA ERA program and the challenges that 
face NARA is the areas of electronic records preservation, system deployment, and 
archival management of the Nation’s permanent records.  The NARA ERA program 
represents a bold initiative in electronic records management and preservation and is a 
call for industry to propose new and innovative approaches to the unique issues NARA 
faces as the steward of the government’s electronic records.  Through the fusion of 
different technologies such as distributed computing, large scale object storage and 
access methods, secure infrastructure, and forward thinking record preservation 
strategies, ERA will open and exciting new era for electronics records management and 
access. 
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Abstract:

The long-term preservation of digital entities requires mechanisms to manage the

authenticity of massive data collections that are written to archival storage systems.

Preservation environments impose authenticity constraints and manage the evolution of

the storage system technology by building infrastructure independent solutions.  This

seeming paradox, the need for large archives, while avoiding dependence upon vendor

specific solutions, is resolved through use of data grid technology.  Data grids provide the

storage repository abstractions that make it possible to migrate collections between

vendor specific products, while ensuring the authenticity of the archived data. Data grids

provide the software infrastructure that interfaces vendor-specific storage archives to

preservation environments.

1. Introduction

A preservation environment manages both archival content (the digital entities that are

being archived), and archival context (the metadata that are used to assert authenticity)

[8].  Preservation environments integrate data storage repositories with information

repositories, and provide mechanisms to maintain consistency between the context and

content.  Preservation systems rely upon software systems to manage and interpret the

data bits.  Traditionally, a digital entity is retrieved from an archival storage system,

structures within the digital entity are interpreted by an application that issues operating

system I/O calls to read the bits, and semantic labels that assign meaning to the structures

are organized in a database.  This process requires multiple levels of software, from the

archival storage system software, to the operating system on which the archive software

is executed, to the application that interprets and displays the digital entity, to the

database that manages the descriptive context. A preservation environment assumes that

each level of the software hierarchy used to manage data and metadata will change over

time, and provides mechanisms to manage the technology evolution.

A digital entity by itself requires interpretation.  An archival context is needed to describe

the provenance (origin), format, data model, and authenticity [9].  The context is created

by archival processes, and managed through the creation of attributes that describe the

knowledge needed to understand and display the digital entities.  The archival context is

organized as a collection that must also be preserved. Since archival storage systems

manage files, software infrastructure is needed to map from the archival repository to the
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preservation collection.  Data Grids provide the mechanisms to manage collections that

are preserved on vendor-supplied storage repositories [7].

Preservation environments manage collections for time periods that are much longer than

the lifetime of any storage repository technology.  In effect, the collection is held

invariant while the underlying technology evolves.  When dealing with Petabyte-sized

collections, this is a non-trivial problem.  The preservation environment must provide

mechanisms to migrate collections onto new technology as it becomes available.  The

driving need behind the migrations is to take advantage of lower-cost storage repositories

that provide higher capacity media, faster data transfer rates, smaller foot-print, and

reduced operational maintenance.  New technology can be more cost effective.

2. Persistent Archives and Data Grids

A persistent archive is an instance of a preservation environment [9].  Persistent archives

provide the mechanisms to ensure that the hardware and software components can be

upgraded over time, while maintaining the authenticity of the collection.  When a digital

entity in migrated to a new storage repository, the persistent archive guarantees the

referential integrity between the archival context, and the new location of the digital

entity.   Authenticity also implies the ability to manage audit trails that record all

operations performed upon the digital entity, access controls for asserting that only

archivists performed the operations, and checksums to assert the digital entity has not

been modified between applications of archival processes.

Data grids provide these data management functions in addition to abstraction

mechanisms for providing infrastructure independence [7].  The abstractions are used to

define the fundamental operations that are needed on storage repositories to support

access and manipulation of data files.  The data grid maps from the storage repository

abstraction to the protocols required by a particular vendor product.  By adding drivers

for each new storage protocol as they are created, it is possible for a data grid to manage

digital entities indefinitely into the future.  Each time a storage repository becomes

obsolete, the digital entities can be migrated onto a new storage repository.  The

migration is feasible as long as the data grid uses a logical name space to create global,

persistent identifiers for the digital entities.  The logical name space is managed as a

collection, independently of the storage repositories.  The data grid maps from the logical

name space identifier to the file name within the vendor storage system.

Data grids support preservation by applying mappings to the logical name space to define

the preservation context.    The preservation context includes administrative attributes

(location, ownership, size), descriptive attributes (provenance, discovery attributes),

structural attributes (components within a compound record), and behavioral attributes

(operations that can be performed on the digital entity).  The context is managed as

metadata in a database.  An information repository abstraction is used to define the

operations required to manipulate a collection within a database, providing the equivalent

infrastructure independence mechanisms for the collection.
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Archivists apply archival processes to convert digital entities into archival forms. Similar

ideas of infrastructure independence can be used to characterize and manage archival

processes.  The application of each archival process generates part of the archival

context. By creating an infrastructure independent characterization of the archival

processes, it becomes possible to apply the archival processes in the future.  An archival

form can then consist of the original digital entity and the characterization of the archival

process. Virtual data grids support the characterization of processes and on demand

application of the process characterizations.   A reference to the product generated by a

process can result in direct access to the derived data product, or can result in the

application of the process to create the derived data product.  Virtual data grids can

characterize and apply archival processes.

Data grids provide the software mechanisms needed to manage the evolution of software

infrastructure [7] and automate the application of archival processes. The standard

capabilities provided by data grids were assessed by the Persistent Archive Research

Group of the Global Grid Forum [8].  Five major categories were identified that are

provided by current data grids:

1. Logical name space; a persistent and infrastructure independent naming

convention

2. Storage repository abstraction; the operations that are used to access and manage

data

3. Information repository abstraction; the operations that are used to organize and

manage a collection within a database

4. Distributed resilient architecture; the federated client-server architecture and

latency management functions needed for bulk operations on distributed data

5. Virtual data grid; the ability to characterize the processing of digital entities, and

apply the processing on demand.

The assessment compared the Storage Resource Broker (SRB) data grid from the San

Diego Supercomputer Center [18], the European DataGrid replication environment

(based upon GDMP, a project in common between the European DataGrid [2] and the

Particle Physics Data Grid [15], and augmented with an additional product of the

European DataGrid for storing and retrieving meta-data in relational databases called

Spitfire and other components), the Scientific Data Management (SDM) data grid from

Pacific Northwest Laboratory [20], the Globus toolkit [3], the Sequential Access using

Metadata (SAM) data grid from Fermi National Accelerator Laboratory [19], the Magda

data management system from Brookhaven National Laboratory [6], and the JASMine

data grid from Jefferson National Laboratory [4].  These systems have evolved as the

result of input by user communities for the management of data across heterogeneous,

distributed storage resources.

EGP, SAM, Magda, and JASMine data grids support high energy physics data.  The

SDM system provides a digital library interface to archived data for PNL and manages

data from multiple scientific disciplines.  The Globus toolkit provides services that can be

composed to create a data grid.  The SRB data handling system is used in projects for
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multiple US federal agencies, including the NASA Information Power Grid (digital

library front end to archival storage) [11], the DOE Particle Physics Data Grid

(collection-based data management) [15], the National Library of Medicine Visible

Embryo project (distributed data collection) [21], the National Archives Records

Administration (persistent archive research prototype) [10], the NSF National Partnership

for Advanced Computational Infrastructure (distributed data collections for astronomy,

earth systems science, and neuroscience) [13], the Joint Center for Structural Genomics

(data grid) [5], and the National Institute of Health Biomedical Informatics Research

Network (data grid) [1].

The systems therefore include not only data grids, but also distributed data collections,

digital libraries and persistent archives.   Since the core component of each system is a

data grid, common capabilities do exist across the multiple implementations.  The

resulting core capabilities and functionality are listed in Table 1.

These capabilities should encompass

the mechanisms needed to implement

a persistent archive.   This can be

demonstrated by mapping the

functionality required by archival

processes onto the functionality

provided by data grids.

3. Persistent Archive Processes

The preservation community has

identified standard processes that are

applied in support of paper

collections, listed in Table 2.  These

standard processes have a

counterpart in the creation of archival

forms for digital entities.  The

archival form consists of the original

bits of the digital entity plus the

archival context that describes the

origin (provenance) of the data, the

authenticity attributes, and the

administrative attributes.  A

preservation environment applies the

archival processes to each digital

entity through use of a dataflow

system, records the state information

that results from each process,

organizes the state information into a

preservation collection, transforms

the digital entity into a sustainable Table 1.  Core Capabilities of Data Grids

Core Capabilities and Functionality

Storage repository abstraction

Storage interface to at least one repository

Standard data access mechanism

Standard data movement protocol support

Containers for data

Logical name space

Registration of files in logical name space

Retrieval by logical name

Logical name space structural independence from physical file

Persistent handle

Information repository abstraction

Collection owned data

Collection hierarchy for organizing logical name space

Standard metadata attributes (controlled vocabulary)

Attribute creation and deletion

Scalable metadata insertion

Access control lists for logical name space

Attributes for mapping from logical file name to physical file

Encoding format specification attributes

Data referenced by catalog query

Containers for metadata

Distributed resilient scalable architecture

Specification of system availability

Standard error messages

Status checking

Authentication mechanism

Specification of reliability against permanent data loss

Specification of mechanism to validate integrity of data

Specification of mechanism to assure integrity of data

Virtual Data Grid

Knowledge repositories for managing collection properties

Application of transformative migration for encoding format

Application of archival processes
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format, archives the original digital entity and its transforms, and provides the ability to

discover and retrieve a specified digital entity.

Archival Process Functionality

Appraisal Assessment of digital entities

Accession Import of digital entities

Description Assignment of provenance metadata

Arrangement Logical organization of digital entities

Preservation Storage in an archive

Access Discovery and retrieval

Table 2.  Archival process functionality for paper records

To understand whether data grids can meet the archival processing requirements for

digital entities, scenarios are given below for the equivalent operations on digital entities.
The term record is used to denote a digital entity that is the result of a formal process, and

thus a candidate for preservation.  The term fonds is used to denote a record series.

Appraisal is the process of determining the disposition of records and in particular which

records need long-term preservation.  Appraisal evaluates the various terms and

conditions applying to the preservation of records beyond the time of their active life in

relation to the affairs that created them.  An archivist bases an appraisal decision on the

uniqueness of the record collection being evaluated, its relationship to other institutional

records, and its relationship to the activities, organization, functions, policies, and

procedures of the institution.

Data grids provide the ability to register digital entities into a logical name space

organized as a collection hierarchy for comparison with other records of the institution

that have already been accessioned into the archives. The logical name space is

decoupled from the underlying storage systems, making it possible to reference digital

entities without moving them.  The metadata associated with those other collections assist

the archivist in assessing the relationship of the records being appraised to the prior

records. Queries are made on the descriptive and provenance metadata to identify

relevant records.  The data grid supports controlled vocabularies for describing

provenance and formats.  This metadata also provides information that helps the archivist

understand the relevance/importance/value of the records being appraised for

documenting the activities, functions, etc. of the institution that created them.  The

activities of the institution can be managed as relationships maintained in a concept

space, or as process characterizations maintained in a procedural ontology.  By

authorizing archivist access to the collection, and providing mechanisms to ensure

authenticity of the previously archived records, the preservation environment maintains

an authentic environment.

Accessioning is the formal acceptance into custody and recording of an acquisition. Data

Grids control import by registering the digital entities into a logical name space organized
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as a collection/sub-collection hierarchy.  The records that are being accessioned can be

managed as a collection independently of the final archival form.  By having the data grid

own the records (stored under a data grid Unix ID), all accesses to the records can be

tracked through audit trails.  By associating access controls with the logical name space,

all references to the records can be authorized no matter where the records are finally

stored.

Data grids put digital entities under management control, such that automated processing

can be done across an entire collection.  Bulk operations are used to move the digital

entities using a standard protocol and to store the digital entities in a storage repository.

Digital entities may be aggregated into containers (the equivalent of a cardboard box for

paper) to control the data distribution within the storage repository.  Containers are used

to minimize the impact on the storage repository name space.  The metadata catalog

manages the mapping from the digital entities to the container in which they are written.

The storage repository only sees the container names.  Standard clients are used for

controlling the bulk operations.

The information repository supports attribute creation and deletion to preserve record or

fonds specific information.  In particular, information on the properties of the records and

fonds are needed for validation of the encoding formats and to check whether the entire

record series has been received.   The accession schedule may specify knowledge

relationships that can be used to determine whether associated attribute values are

consistent with implied knowledge about the collection, or represent anomalies and

artifacts.  An example of a knowledge relationship is the range of permissible values for a

given attribute, or the expected number of records in a fonds.  If the range of values do

not match the assertions provided by the submitter, the archivist needs to note the

discrepancy as a property of the collection.

Bulk operations are needed on metadata insertion when dealing with collections that

contain millions of digital entities.  A resilient architecture is needed to specify the

storage system availability, check system status, authenticate access by the submitting

institution, and specify reliability against data loss.  At the time of accession, mechanisms

such as checksums, need to be applied to be able to assert in the future that the data has

not been changed.

The Open Archival Information System (OAIS) specifies submission information

packages that associate provenance information with each digital entity [14].  While

OAIS is presented in terms of packaging of information with each digital entity, the

architecture allows bulk operations to be implemented.  An example is bulk loading of

multiple digital entities, in which the provenance information is aggregated into an XML

file, while the digital entities are aggregated into a container.  The XML file and

container are moved over the network from the submitting site to the preservation

environment, where they are unpacked into the storage and information repositories.

The integrity of the data (the consistency between the archival context and archival

content) needs to be assured, typically by imposing constraints on metadata update.
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When creating replicas and aggregating digital entities into containers, state information

is required to describe the status of the changes.  When digital entities are appended to a

container, write locks are required to avoid over-writes.  When a container is replicated, a

synchronization flag is required to identify which container holds the new digital entities,

and synchronization mechanisms are needed to update the replicas.

The accession process may also impose transformative migrations on encoding formats to

assure the ability to read and display a digital entity in the future.  The transformative

migrations can be applied at the time of accession, or the transformation may be

characterized such that it can be applied in the future when the digital entity is requested.

In order to verify properties of the entire collection, it may be necessary to read each

digital entity, verify its content against an accession schedule, and summarize the

properties of all of the digital entities within the record series.  The summarization is

equivalent to a bill of lading for moving the record series into the future.  When the

record series is examined at a future date, the archivist needs to be able to assert that the

collection is complete as received, and that missing elements were never submitted to the

archive.  Summarization is an example of a collection property that is asserted about the

entire record series.  Other collection properties include completeness (references to

records within the collection point to other records within the collection), and closure

(operations on the records result in data products that can be displayed and manipulated

with mechanisms provided by the archive).  The closure property asserts that the archive

can manipulate all encoding formats that are deposited into the archive.

Arrangement is the process and result of identification of documents for whether they

belong to accumulations within a fonds or record series. Arrangement requires

organization of both metadata (context) and digital entities (content).  The logical name

space is used as the coordination mechanism for associating the archival context with the

submitted digital entities.  All archival context is mapped as metadata attributes onto the

logical name for each digital entity.  The logical name space is also used as the

underlying naming convention on which a collection hierarchy is imposed.  Each level of

the collection hierarchy may have a different archival context expressed as a different set

of metadata.  The metadata specifies relationships of the submitted records to other

components of the record series.  For a record series that has yearly extensions, a suitable

collection hierarchy might be to organize each year’s submission as a separate sub-

collection, annotated with the accession policy for that year.  The digital entities are

sorted into containers for physical aggregation of similar entities.  The expectation is that

access to one digital entity will likely require access to a related digital entity.  The

sorting requires a specification of the properties of the record series that can be used for a

similarity analysis.  The container name in which a digital entity is placed is mapped as

an administrative attribute onto the logical name.  Thus by knowing the logical name of a

digital entity within the preservation environment, all pertinent information can be

retrieved or queried.

The process of arrangement points to the need for a digital archivist workbench.  The

storage area that is used for applying archival processes does not have to be the final
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storage location.  Data grids provide multiple mechanisms for arranging data, including

soft-links between collections to associate a single physical copy with multiple sub-

collections, copies that are separately listed in different sub-collections, and versions

within a single sub-collection.  Data grids provide multiple mechanisms for managing

data movement, including copying data between storage repositories, moving data

between storage repositories, and replicating data between storage repositories.

Description is the recording in a standardized form of information about the structure,

function and content of records:  Description requires a persistent naming convention and

a characterization of the encoding format, as well as information used to assert

authenticity.  The description process generates the archival context that is associated

with each digital entity.  The archival context is includes not only the administrative

metadata generated by the accession and arrangement processes, but also descriptive

metadata that are used for subsequent discovery and access.

Preservation Function Type of information

Administrative Location, physical file name, size, creation time, update

time, owner, location in a container, container name,

container size, replication locations, replication times

Descriptive Provenance, submitting institution, record series attributes,

discovery attributes

Authenticity Global Unique Identifier, checksum, access controls, audit

trail, list of transformative migrations applied

Structural Encoding format, components within digital entity

Behavioral Viewing mechanisms, manipulation mechanisms

Table 3.  Archival context managed for each digital entity

The description process can require access to the storage repository to apply templates for

the extraction of descriptive metadata, as well as access to the information catalog to

manage the preservation of the metadata.  The description process should generate a

persistent handle for the digital entity in addition to the logical name.  The persistent

handle is used to assert equivalence across preservation environments.  An example of a

persistent handle is the concatenation of the name of the preservation environment and

the logical name of the entity, and is guaranteed unique as long as the preservation

environments are uniquely named.  The ability to associate a unique handle with a digital

entity that is already stored requires the ability to apply a validation mechanism such as a

digital signature or checksum to assert equivalence.  If a transformative migration has

occurred, the validation mechanism may require access to the original form of the digital

entity.

Preservation is the process of protecting records of continuing usefulness:  Preservation

requires a mechanism to interact with multiple types of storage repositories, mechanisms

for disaster recovery, and mechanisms for asserting authenticity.
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The only assured mechanism for guaranteeing against content or context loss is the
replication of both the digital entities and the archival metadata.  The replication can

implement bit-level equivalence for asserting that the copy is authentic.  The replication
must be done onto geographically remote storage and information repositories to protect

against local disasters (fire, earthquake, flood).  While data grids provide tools to
replicate digital entities between sites, some form of federation mechanism is needed to

replicate the archival context and logical name space.  One would like to assert that a
completely independent preservation environment can be accessed that replicates even

the logical names of the digital entities.  The independent systems are required to support
recovery from operation errors, in which recovery is sought from the mis-application of

the archival procedures themselves.

The coordination of logical name spaces between data grids is accomplished through
peer-to-peer federation.  Consistency controls on the synchronization of digital entities

and metadata between the data grids are required for the user name space (who can
access digital entities), the resources (whether the same repository stores data from

multiple grids), the logical file names (whether replication is managed by the systems or
archival processes), and the archival context (whether insertion of new entities is

managed by the system or archival processes).  Multiple versions of control policies can
be implemented, ranging from automated replication into a union archive from multiple

data grids, to simple cross-registration of selected sub-collections.

Data grids use a storage repository abstraction to manage interactions with heterogeneous
storage systems.  To avoid problems specific to vendor products, the archival replica

should be made onto a different vendor’s product from the primary storage system.  The
heterogeneous storage repositories can also represent different versions of storage

systems and databases as they evolve over time. When a new infrastructure component is
added to a persistent archive, both the old version and new version will be accessed

simultaneously while the data and information content are migrated onto the new
technology.  Through use of replication, the migration can be done transparently to the

users. For persistent archives, this includes the ability to migrate a collection from old
database technology onto new database technology.

Persistence is provided by data grids through support for a consistent environment, which

guarantees that the administrative attributes used to identify derived data products always
remain consistent with migrations performed on the data entities.  The consistent state is

extended into a persistent state through management of the information encoding
standards used to create platform independent representations of the context.  The ability

to migrate from an old representation of an information encoding standard to a new
representation leads to persistent management of derived data products.  It is worth

noting that a transformative migration can be characterized as the set of operations
performed on the encoding syntax.  The operations can be applied on the original digital

entity at the time of accession or at any point in the future.  If a new encoding syntax
standard emerges, the set of operations needed to map from the original encoding syntax

to the new encoding syntax can be defined, without requiring any of the intermediate
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encoding representations. The operations needed to perform a transformative migration
are characterized as a digital ontology [8].

Authenticity is supported by data grids through the ability to track operations done on

each digital entity.  This capability can be used to track the provenance of digital entities,

including the operations performed by archivists. Audit trails record the dates of all

transactions and the names of the persons who performed the operations.  Digital

signatures and checksums are used to verify that between transformation events the

digital entity has remained unchanged.  The mechanisms used to accession records can be

re-applied to validate the integrity of the digital entities between transformative

migrations.  Data grids also support versioning of digital entities, making it possible to

store explicitly the multiple versions of a record that may be received.  The version

attribute can be mapped onto the logical name space as both a time-based snapshot of a

changing record, and as an explicitly named version.

Access is the process of using descriptive metadata to search for archival objects of

interest and retrieve them from their storage location.  Access requires the ability to

discover relevant documents, transport them from storage to the user, and interact with

storage systems for document retrieval.  The essential component of access is the ability

to discover relevant files.  In practice, data grids use four naming conventions to identify

preserved content.  A global unique identifier (GUID) identifies  digital entities across

preservation environments, the logical name space provides a persistent naming

convention within the preservation environment, descriptive attributes support discovery

based on attribute values, and the physical file name identifies the digital entity within a

storage repository.  In most cases, the user of the system will not know either the GUID,

logical name or physical file name, and discovery is done on the descriptive attributes.

Access then depends upon the ability to instantiate a collection that can be queried to

discover a relevant digital entity.  A knowledge space is needed to define the semantic

meaning of the descriptive attributes, and a mechanism is needed to create the database

instance that holds the descriptive metadata.  For a persistent archive, this is the ability to

instantiate an archival collection from its infrastructure independent representation onto a

current information repository.  The information repository abstraction supports the

operations needed to instantiate a metadata catalog.

The other half of access is transport of the discovered records. This includes support for
moving data and metadata in bulk, while authenticating the user across administration

domains.   Since access mechanisms also evolve in time, mechanisms are needed to map
from the storage and information repository abstractions to the access mechanism

preferred by the user.

4. Preservation Infrastructure

The operations required to support archival processes can be organized by identifying

which capability is used by each process. The resulting preservation infrastructure is

shown in Table 4.  The list includes the essential capabilities that simplify the

management of collections of digital entities while the underlying technology evolves.
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The use of each capability by one of the six archival processes is indicated by an x in the

appropriate row. The columns are labeled by App (Appraisal), Acc (Accessioning), Arr

(Arrangement), Des (Description), Pres (Preservation), and Ac (Access).  Many of the

data grid capabilities are required by all of the archival processes.  This points out the

difficulty in choosing an appropriate characterization for applying archival processes to

digital entities.  Even though we have shown that the original paper-oriented archival

processes have a counterpart in preservation of digital entities, there may be a better

choice for characterizing electronic archival processes.

Core Capabilities and Functionality App Acc Arr Des Pres Ac

Storage repository abstraction x x x x

Storage interface to at least one repository x x x x x

Standard data access mechanism x x x x x

Standard data movement protocol support x x x x x

Containers for data x x x x

Logical name space x x x x x x

Registration of files in logical name space x x x x x

Retrieval by logical name x x x x

Logical name space structural independence from physical file x x x x x x

Persistent handle x x x x x

Information repository abstraction x x x x x x

Collection owned data x x x x x x

Collection hierarchy for organizing logical name space x x x x

Standard metadata attributes (controlled vocabulary) x x x x x x

Attribute creation and deletion x x x x x

Scalable metadata insertion x x x x

Access control lists for logical name space x x x x x x

Attributes for mapping from logical file name to physical file x x x x

Encoding format specification attributes x x x x x

Data referenced by catalog query x

Containers for metadata x x x x x

Distributed resilient scalable architecture x x x x x x

Specification of system availability x x x

Standard error messages x x x x x

Status checking x x x x x

Authentication mechanism x x x x x x

Specification of reliability against permanent data loss x x x x x

Specification of mechanism to validate integrity of data x x x x x

Specification of mechanism to assure integrity of data x x x x x x

Virtual Data Grid x x x x x

Knowledge repositories for managing collection properties x x x x x x

Application of transformative migration for encoding format x x x x x

Application of archival processes x x x x x

Table 4.  Data Grid capabilities used in preservation environments

5. Persistent Archive Prototype

The preservation of digital entities is being implemented at the San Diego Supercomputer

Center (SDSC) through multiple projects that apply data grid technology.  In

collaboration with the United States National Archives and Records Administration

(NARA), SDSC is developing a research prototype persistent archive.  The preservation
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environment is based on the Storage Resource Broker (SRB) data grid [17], and links

three archives at NARA, the University of Maryland, and SDSC.   For the National

Science Foundation, SDSC has implemented a persistent archive for the National Science

Digital Library [12].  Snapshots of digital entities that are registered into the NSDL

repository as URLs are harvested from the web and stored into an archive using the SRB

data grid.  As the digital entities change over time, versions are tracked to ensure that an

educator can find the desired version of a curricula module.

Both of these projects rely upon the ability to create archival objects from digital entities

through the application of archival processes.  We differentiate between the generation of

archival objects through the application of archival processes, the management of

archival objects using data grid technology, and the characterization of the archival

processes themselves, so that archived material can be re-processed (or re-purposed) in

the future using virtual data grids.

The San Diego Supercomputer Center Storage Resource Broker (SRB) is used to

implement the persistent archives.  The SRB provides mechanisms for all of the

capabilities and functions listed in Table 2 except for knowledge repositories.  The SRB

also provides mechanisms for the extended features listed in section 3, such as soft-links,

peer-to-peer federation of data grids, and mapping to user-preferred APIs.  The SRB

storage repository abstraction is based upon standard Unix file system operations, and

supports drivers for accessing digital entities stored in Unix file systems (Solaris, SunOS,

AIX, Irix, Unicos, Mac OS X, Linux), in Windows file systems (98, 2000, NT, XP, ME),

in archival storage systems (HPSS, UniTree, DMF, ADSM, Castor, Dcache, Atlas Data

Store), as binary large objects in databases (Oracle, DB2, Sybase, SQLServer,

PostgresSGL), in object ring buffers, in storage resource managers, in FTP sites, in

GridFTP sites, on tape drives managed by tape robots, etc.  The SRB has been designed

to facilitate the addition of new drivers for new types of storage systems.  Traditional

tape-based archives still remain the most cost-effective mechanism for storing massive

amounts of data, although the cost of commodity-based disk is approaching that of tape

[17].  The SRB supports direct access to tapes in tape robots.

The SRB information repository abstraction supports the manipulation of collections

stored in databases.  The manipulations include the ability to add user-defined metadata,

import and export metadata as XML files, support bulk registration of digital entities,

apply template-based parsing to extract metadata attribute values, and support queries

across arbitrary metadata attributes.  The SRB automatically generates the SQL that is

required to respond to a query, allowing the user to specify queries by operations on

attribute values.

Version 3.0.1 of the Storage Resource Broker data grid provides the basic mechanisms

for federation of data grids [16].  The underlying data grid technology is in production

use at SDSC and manages over 90 Terabytes of data comprising over 16 million files.

The ultimate goal of the NARA research prototype persistent archive is to identify the

key technologies that facilitate the creation of a preservation environment.
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5. Summary

Persistent archives manage archival objects by providing infrastructure independent

abstractions for interacting with both archival objects and software infrastructure. Data

grids provide the abstraction mechanisms for managing evolution of storage and

information repositories.  Persistent archives use the abstractions to preserve the ability to

manage, access and display archival objects while the underlying technologies evolve.

The challenge for the persistent archive community is the demonstration that data grid

technology provides the correct set of abstractions for the management of software

infrastructure.  The Persistent Archive Research Group of the Global Grid Forum is

exploring this issue, and is attempting to define the minimal set of capabilities that need

to be provided by data grids to implement persistent archives [8].  A second challenge is

the development of digital ontologies that characterize the structures present within

digital entities.  The Data Format Description Language research group of the Global

Grid Forum is developing an XML-based description of the structures present within

digital entities, as well as a description of the semantic labels that are applied to the

structures.  A third challenge is the specification of a standard set of operations that can

be applied to the relationships within an archival object.  A preservation environment will

need to support operations at the remote storage repository, through the application of a

digital ontology.
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Abstract 

Through earth and space modeling and the ongoing launches of satellites to gather data, NASA 
has become one of the largest producers of data in the world.  These large data sets necessitated 
the creation of a Data Management System (DMS) to assist both the users and the administrators 
of the data.  Halcyon Systems Inc. was contracted by the NASA Center for Computational 
Sciences (NCCS) to produce a Data Management System. The prototype of the DMS was 
produced by Halcyon Systems Inc. (Halcyon) for the Global Modeling and Assimilation Office 
(GMAO).  The system, which was implemented and deployed within a relatively short period of 
time, has proven to be highly reliable and deployable.  Following the prototype deployment, 
Halcyon was contacted by the NCCS to produce a production DMS version for their user 
community.  The system is composed of several existing open source or government-sponsored 
components such as the San Diego Supercomputer Center’s (SDSC) Storage Resource Broker 
(SRB), the Distributed Oceanographic Data System (DODS), and other components.  Since Data 
Management is one of the foremost problems in cluster computing, the final package not only 
extends its capabilities as a Data Management System, but also to a cluster management system. 
This Cluster/Data Management System (CDMS) can be envisioned as the integration of existing 
packages. 

1. Introduction 

In the last twelve years, Commercial Off-the-Shelf (COTS)-based cluster computing has become 
the main source of supercomputing providers.  From the revolution of the first viable 
microprocessors that lead the way to replacing vector supercomputers, to passing through new 
network technologies and arriving at the efficient porting of scientific code, the road to cluster 

93



computing was paved with problems seemingly impossible to resolve.  In a sense, the battle was 
won; but the war is still being fought. 
 
Many aspects of computing have changed so radically that situations from the past seem 
unbelievably irrelevant today.  Up until 1999, computing centers spent an immense amount of 
time in lengthy negotiations with vendors in an effort to obtain “build-able operating system 
codes”.  Today, they can directly download them from the web. 
 
Still, in the midst of a new era with the power of COTS microprocessors, there are many 
challenges.  Despite networks with low latency and high bandwidth and build-able operating 
systems and the availability of a myriad of open source packages, cluster computing is, at best, a 
difficult task that fails to replace the panacea days of Cray Research Inc.’s delivery of a C90 
supercomputer. 
 
The Data Management System (DMS) attempts to fill the void of middleware that both 
supercomputing centers and their users need in order to easily manage and use the diverse 
technology of cluster computers. The DMS is composed of several existing open source or 
government-sponsored components, such as the San Diego Supercomputing Center’s Storage 
Resource Broker (SRB), the Distributed Oceanographic Data System (DODS), and others.  Since 
data management is one of the major concerns in High Performance Computing (HPC), the final 
DMS package not only serves as a data management system for very high end computing, but it 
can easily be extended to a complete cluster management system. 
 
Many areas of science that base their results on computing resources have different ratios of 
Mega-Flops per byte of data ingested and/or produced.  Meteorology is a science that ingests and 
produces voluminous amounts of data.  It is not a coincidence that the same branch of science 
that produced the word “computer” is now leading the core issues of cluster computing. 
 
One of the legacy items from the previous computing models of the 60’s, 70’s, 80’s, and 90’s is 
the separation of mass storage engines and computing clusters.  At this point, it is more efficient 
to follow the management structure of the computing centers rather than the computing 
architecture of the systems.  COTS mass storage units, with multiple terabytes of attached disks, 
are just as reliable and economical as the COTS computing nodes. COTS CPU power has grown 
side-by-side with high bandwidth internal interconnects and new devices like Serial ATA and 
others that can provide support for multi-terabyte storage on each single unit.  At the same time, 
OS improvements (Linux, etc.) make it possible to support those large file systems. 
 
In a generic scientific computing center, the problem that must be solved is how to manage the 
vast amount of data that is being produced by multiple users in a variety of formats.  And, the 
added challenge is to do so in a manner that is consistent and that does not consume all of the 
users’ time manipulating such data or all of the computer center’s personnel in endless 
migrations from one system to another and from one accounting report to the next.  This holds 
true across a broad range of actions from software engineering practices, to the production of 
code, to upgrading OS versions and patches, and includes changes in the systems, in accounting, 
in system engineering practices, and in the management of the actual scientific data.  
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Despite the best efforts of computing centers, “dead data” continues to mount up in mass storage 
vaults.  The increasing cost of maintaining the storage, migrating, and in general curating can 
reach up to 40% of the total budget of a typical computing center.  These curation activities (such 
as changing ownership, deleting, browsing, etc.) add to the burden of data management.  
Likewise, the proliferation of mass storage vaults is increasingly higher:  two copies in situ, a 
third copy for catastrophic recovery, a copy in the computing engine (scratch) and additional 
copies wherever users need them (desktops, websites, etc.).  This not only drives up costs, but it 
also undermines the collaboration among different scientists wherein data sharing becomes a 
limiting factor. 
 
The cost and expertise necessary to deploy a Grid-useable computing node is too high for small 
computing groups.  Groups of ten to twenty computer users typically have one or two system 
administrators and no system software developers, which makes the start-up cost beyond their 
reach (both in terms of dollars and expertise).  As computing power increases, fewer groups need 
a true supercomputer platform. A successful Grid should easily deploy smaller nodes and 
maintain production level.    
 
Finally, the lack of connection between the datasets and the software engineering practices (code 
version, patches, etc.) and the computing environment (CPU type, number of CPUs, etc.) limits 
the life of a dataset, its utility, and the scientific verification value. 
 
In this paper we describe an integration effort composed of several existing packages that solves, 
to a large extent (but not totally), the data management problem for data coming out of a cluster 
computing environment.  As a posteriori result we describe how the data management, essential 
to the utility of a cluster, becomes a centerpiece for its management.  We also propose an 
ensemble set that can be used as a turn-key engine for a further integration of Cluster/Data 
Management into a full Grid/Data Management System (“Incoherent”).  In this area, Halcyon 
proposes that Incoherent be an Open Source Project. 

2. Basic Requirements for a Data Management System 

The following list contains the basic requirements for the DMS. 
 

Ensure a single point of information wherein data is retrieved/searched.  Though there 
might be many different interfaces, the initial point of contact for each interface should 
be the same. 

Provide system tools to cap storage costs and select datasets to be expunged. 

Provide methods for minimizing the number of data copies (and conceivably provide a 
live backup of the data).  The copy that is more efficient to fetch should be the one that is 
accessed. 

Establish a linkage between data, scientific metadata, computing metadata, and 
configuration management data. 

Provide support for data migration whether it is from computing nodes to local storage 
(where users are) or from one storage system to another. 

Support plug and play of different visualization tools. 

95



Avoid multiple, full, or subset copies of datasets in the system by providing a Virtual 
Local Data capacity (data always feels local), along with the automatic use of local 
caches and sub-setting on-the-fly. 

Provide robust, easily deployed, grid-compatible security tools. 

Deploy with ease.  Most department-type scientific groups do not have the resources to 
integrate a fully deployed Cluster Software Management and Mass Storage System. 

3. Data Management System, Present Components 

Halcyon Systems has integrated several packages to work together as a DMS: 
 

Storage Resource Broker (front-end mass storage, metadata catalog) 

Distributed Oceanographic Data System (transport layer, connection to manipulation and 
visualization tools) 

Configuration Management Software for all systems involved 

Distributed Oceanographic Data System and GrADS visualization tool 
 
A minimal number of changes were implemented in the SRB software.  A build tool and 
benchmarks were produced for ease of administration.  Exit codes were changed to comply with 
standard UNIX command return codes.  The underlying database is Oracle 9i running on Linux. 
 
The DODS dispatch script is CGI-Perl.  It was modified to make calls to SRB S-utilities to 
retrieve and cache files from SRB.  Once a file has been transferred to local disk, it remains there 
until either the SRB version is modified or the cache fills and it is the oldest file.  The DODS 
server authenticates as SRB identity "dods", and users who wish to export their files via DODS 
add read access for that user to the files' access control lists. 
 
The DODS environment does not maintain a separate metadata catalog for managing semantic-
based access to the data.  There is presently no connection between DODS metadata, which is 
synthesized from the DODS-served file depending on the data format, and SRB metadata, which 
is stored in the MCAT associated with the file.  MCAT data cannot yet be retrieved through 
DODS, nor is DODS-style synthesized metadata stored in MCAT. 
 
Configuration Management Software is a set of commands enabling the user/administrator to 
enter changes in the specifically devoted tables created separately from the SRB tables in the 
Oracle database. 
 
GrADS is already integrated with DODS; however, future work will have a separate server 
(GrADS-DODS server or GDS) fully integrated with SRB.  In this way, a wider set of data 
manipulation and computation will be directly accessible to DMS users.   
 
Note on GCMD integration:  DMS uses SRB's "user defined metadata" facility to store GCMD-
compliant metadata.  We have defined site-standard user metadata attributes corresponding to the 
attributes defined in GCMD; then restricted their values based on GCMD convention.  An 
application level tool replaces the general purpose SRB metadata manipulation client and 
enforces the conventions. 
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4. Existing Architecture 
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Figure 1: Depicts the existing components of the DMS deployed at the NCCS and their functionality. 

5. Requirement Fulfillment 

Based on the requirements and the architecture described above, the DMS currently meets the 
following requirements. 
 

There should be a single point of information for retrieving/searching the data.  Even 
though there might be many different interfaces, the initial point of contact for each 
interface should be the same.  SRB provides a single point of access for the data. 

 

The system should provide tools to cap storage costs and select datasets to be expunged. 
The Data Management System Toolkit provides tools to manage expiration dates for 
datasets and mechanisms allowing users to preserve selected datasets beyond a given 
lapse of time (separate description). 

 

The system should provide ways to minimize the number of data copies and could 
provide a live backup of the data.  The copy that is more efficient to fetch should be the 
one fetched.  DODS/OpenDAP can manage a local cache, network-wise close to the 
users. Computations, on-the-fly sub-setting can be provided by tools like the GrADS-
DODs server (active implementation already on-going).  

97



 

Scratch space on the computing platforms can be managed by a short expiration date of a 
SRB replica of a given dataset. 

 

Linkage between data, scientific metadata, computing metadata. and configuration 
management data.  SRB flexible metadata schemas provide a linkage between datasets 
and their scientific content.  Metadata schema has been modified to accommodate the 
format provided by the Global Change Master Directory Software (GCMD), although a 
fully compatible version of GCMD has not been implemented as yet. Halcyon also has 
integrated a Configuration Management Software into the DMS that links the system 
“state” (patches, compilers, etc.) of computing engines with the dataset metadata. 

 

Provide support for data migration from computing nodes to local storage (where users 
are) or from one storage system to another:  SRB provides bulk transfer from legacy mass 
storage systems to newer ones; and DODs/OpenDAP can manage local caches as datasets 
are requested by users. The Halcyon DMS Toolkit provides the following features: 

 

file ownership management (user, group, project) 

file expiration dates management tools 

dms acct uses MCAT interface for accounting reports 

dms admin provides administrative commands 

dms meta provides metadata management, search 

dms ingest stores files with metadata automatically 

adds concept of file certification. A process through which  
the users can extend the life of a file beyond expiration dates. 

 

Provide robust, easily deployed, grid-compatible security tools. SRB’s underlying 
security infrastructure is compatible with the Grid Security Infrastructure (GSI).  At the 
moment, the current DMS deployment is using password encryption, which is more 
robust than FTP and does not pass clear text passwords.  GSI can support tickets (PKI) 
and Kerberos infrastructure. 

 

Ease of deployment.  Most department-type scientific groups do not have the resources to 
integrate a fully deployed Cluster Software Management and Mass Storage System. 
Halcyon is planning to deploy a turn-key server, named Infohedron, to deploy the DMS 
software in a single box (see next section). 

6. Performance 

As with all high performance production systems, the risk of not utilizing all available network 
bandwidth can be a significant issue.  In tests performed between two single points at NCCS, the 
following results have proven that the DMS and, particularly, SRB are able to sustain 
performance levels equivalent to scp transfers without the overhead of CPU consumption due to 
encrypting and decrypting the data. 
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The NCCS implementation is built around a pair of redundant Linux-based SRB MCAT servers 
running Oracle/9i to provide database services.  These DMS servers are identically configured 
two-CPU Xeon systems with 4 GBytes of RAM and SCSI RAID disk arrays.  One machine, the 
primary, is the active server.  The second is a hot backup that can be brought into production 
within two hours should a catastrophic failure disable the first, losing at most thirty minutes 
worth of MCAT transactions—although in the vast majority of situations the RAID arrays 
prevent this type of serious failure and no transactions will be lost. 
 
DMS/SRB I/O bandwidth was measured between two hosts, “halem”, a Compaq Tru64 compute 
cluster acting as SRB client, and “dirac”, a Solaris9-based SAM-QFS storage server.  The tests 
reported here used a single node of halem and a single node of dirac interconnected by Gigabit 
Ethernet.  Thirty-two transfer  threads ran simultaneously—although test results indicated that 
the performance changed little from eight to sixty-four nodes.  These bandwidth tests were 
designed to demonstrate that DMS/SRB is capable of supporting the near-term projected storage 
load for NCCS, which was estimated at 2 TBytes per day with a ratio of three writes to one 
read—i.e., 1.5 TB write traffic and 0.5 TB read traffic per day.  The average file at NCCS is 40 
MBytes in size, and it was calculated that in order to meet the daily write requirement it would 
be necessary to complete the transfer of 1600 files in an hour.  Although only one third this 
number of files had to be transferred within an hour to meet the read test requirements, for 
convenience the tests ran with the same group of 1600. 
 
A significant part of the file transfer time is due to MCAT overhead independent of the file size, 
so the aggregate throughput increases significantly as the file size increases.  For these tests, no 
NCCS-specific network optimization—for instance adjustment of network buffer sizes—took 
place. 

 
 

TEST ELAPSED m. MB/s TB/day 

write 30.5 - 33.3 32 - 35 2.6 – 2.9 

read 17.6 – 32.2 33 – 60 2.7 – 5.0 

 
 
 
 
 

1600 40MB files, 32 threads, halem  dirac 
requirement: 1 hr. or less, 2TB day (3:1 W:R) 

 
NOTE:  single client system to single server system; 

             no optimization to NCCS network 
 

As the table demonstrates, DMS/SRB was easily able to meet the requirements even without 
optimization.  The daily performance numbers were extrapolated from the 1600-file test 
performance. 
 
The second group of tests measured MCAT transaction performance and were intended to 
demonstrate that DMS can support the expected number of file metadata operations per day. For 
the tests, it was estimated that each file would have 15 associated metadata attribute-value pairs, 
and similarly to the bandwidth tests a group of 1600 canonical 40 MByte files was used.  
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Metadata insertions and deletions were tested, as well as simple queries—display of the metadata 
attributes associated with a particular file.  50,000 insertions and deletions were required each 
day, as well as 10,000 searches. 
 

DMS Performance: Metadata 

 

TEST ELAPSED m. TRANS/s TRANS/day 

insert 43.5 – 48.6 8.2 – 9.2 711K – 795K 

query 2.9 – 3.1 129 – 140 11.2M – 12.1M 

delete 42.4 – 45.3 8.8 – 9.4 770K – 815K 

 
1600 40MB files, 32 threads, halem  dirac 
requirement: 50K inserts/day, 10K search/day 

 
Even more so than with the bandwidth tests, the DMS/SRB easily exceeded the requirements. 

7. Infohedron System Architecture 

Presently, the DMS system is built on a Linux and Oracle 9i platform with limited redundancy 
(manual switchover), which covers the minimal needs of a production system.  The cost of 
upgrading to a replicated database is largely due to the cost of an Oracle replicating database. 
Halcyon is testing the deployment of a Postgres-based, underlying database.  In this area, 
Halcyon has been using an SRB 2.1 server while advancing to Postgres version 7.4. This 
decision has been based on the large customer base of Postgres – which allows it to mature faster 
– and the smaller customer base of SRB, which implies a slower maturation process of the 
software to arrive at the production level required by the NCCS environment.  With an upgrade 
to SRB 3.0, the process would close the compatibility of Infohedron platforms by distributing the 
metadata catalog and, thereby, form a federated DMS. 
 
In planning for the full deployment of Infohedron, Halcyon has included the GrADS-DODS 
server to fulfill the needs of NCCS major customers, such as the Global Modeling and 
Assimilation Office (GMAO), as well as the following packages (to make it useful to a wider 
audience of customers). 
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Figure 2:  Depicts the turn-key option with typical services needed by a scientific group to adhere to a Grid-like 
in  
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frastructure. The seemingly chaotic disposition of the packages is intended to depict large variations in needs from
group-to-group. The question marks indicate uncertainties in the configuration of groups or the possibility of 

replacing them with other packages. 

t 

By managing the accounting in th
provide full utilization of the cluster and the local caches co-located with the users and the 
scratch space of the computing cluster itself.  By containing the software engineering 
information and the computing configuration management, DMS is able to provide data integrity 
and reproducibility. 
 
H
enabling the Grid. Migration of data and underlying data movements can be controlled in a small 
environment automatically and in a larger environment with the aid of user indirect manipulation 
(SRB replication process).  Finally user control of data sharing and user quotas (SRB 3.0) can 
enable cluster sharing, producing a CDMS. 
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9. Future Directions 

Though many of the components described in this paper already exist, and their integration is 
relatively simple, the production level will be arduous to achieve.  Halcyon provides a rigorous 
system engineering background to test, document and deploy all components.  While the effort is 
sizeable, it has the potential to move progressively toward deployment of a large grid by doing 
the hardest work first – incorporating legacy data into a Data Management System and then 
enlarging the DMS into a wider set of services service like CDMS. 
 
Parallel transfers of datasets over separate rails support is provided by SRB.  However, it has not 
been tested under production on DMS. 
 
GSI infrastructure has not been deployed at NCCS.  The level of Software Systems support has 
not yet been determined. 
 
Grid wise accounting has not yet been defined under CDMS. 
 
The Earth System Modeling Framework (http://www.esmf.ucar.edu/) is in the process of 
formulating an I/O interface.  The DMS project will provide a library to interact directly with 
DMS.  If proper network support is provided, an application running in a computer cluster could 
directly deposit files into mass storage systems.  In this way, a consolidation of high performance 
file-systems would provide savings, as well as avoid the usual double I/O process of depositing 
files in a local parallel file-system and then transporting them to mass storage. 
 
Integration of the DMS with Lustre:  Luster is a distributed file-system designed to provide high 
performance and excellent scalability for cluster computers.  The resulting system would 
combine the simplicity, portability, and rich interfaces of DMS with the high performance and 
scalability of Lustre, effectively extending DMS to efficiently support data-intensive cluster-
based supercomputing. 
 
Lustre is designed to serve clusters with tens of thousands of nodes, manage petabytes of storage, 
and achieve bandwidths of hundreds of GBs/sec with state of the art security and management 
infrastructure.  It is currently being developed with strong funding from the Department of 
Energy and corporate sponsors. 
 
Experimentation with more integration between SRB and the underlying Hierarchical Storage 
Systems could lead to a more efficient sub-setting by extracting only necessary parts of the files 
to be sub-set directly from tape (no full file recalling).  This is similar to the ECMWF MARS 
Archive. 
 
In conclusion we propose a two-tier approach: Firstly, convert the typical mass 

storage/computing cluster architecture most computing centers have to a service rich 

Cluster/Data Management System Architecture as, for example, the one described in this paper. 

Secondly, produce a brick-like engine that can take care of most requirements of the diverse, 

medium- to small-size groups.  These bricks would provide local data caches and direct 

connection to software trees, as well as many other services targeted to the individual groups. 
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In this manner local idiosyncrasies can be accommodated while maintaining a homogeneous 

systems engineering throughout a Computing Grid.  

 

The further development of this project would be a breakthrough in data-intensive 

supercomputing, alleviating a persistent performance bottleneck by enabling efficient analysis 

and visualization of massive, distributed datasets.  By exploiting dataset layout metadata to 

provide direct access to the relevant portions of the data, it is possible to avoid the performance 

limiting serialization traditionally imposed by requiring transfer of the entire dataset through a 

non-parallel mass storage system. 
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Abstract

Shared storage has become commonplace with recent trends in storage technolo-
gies, such as storage consolidation and virtualization, etc. Meanwhile, storage QoS,
which guarantees different storage service requirements from various applications to-
ward shared storage, is gaining in importance. This paper proposes a new scheme
which combines a feedback-controlled leaky bucket with a fair queuing algorithm
in order to deliver guaranteed storage service for applications competing for shared
storage. It not only assures an agreed-upon response time for each application, but
also maximizes the aggregate I/O throughput by proportionating unused bandwidth
to other active applications. Simulation results under various types of competing I/O
workloads validate the features of the proposed scheme.

1 Introduction

The explosive growth of on-line data in many applications, such as multimedia, e-business,
ERP, etc., poses scalability and manageability problems with storage. The advent of storage
consolidation through SAN and storage cluster has overcome the limitation of scalability
in traditional directed-attached storage environments. Moreover, the introduction of a new
abstraction layer between physical disks and storage management applications called stor-
age virtualization reduces complexity in storage manageability dramatically. With these
trends in storage technologies, a shared storage model is now accepted in many areas, such
as storage service providers, departmental storage environments in an enterprise, etc.

In a shared storage environment, it is commonplace for different users or applications
to share a physical disk resource. Moreover, each application assumes that the storage is
owned by itself, implying that it demands to have a guaranteed storage service called stor-
age QoS at all times no matter how many applications share the storage. The storage QoS
can be specified in many aspects which include I/O performance, reliability/availability,
capacity, cost, etc. The issue of delivering guaranteed I/O performance has been given a
higher priority than the others [6, 7, 12]. In addition, Shenoy and Vin in [7] described how
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partitioning storage bandwidth can satisfy the different I/O performance requirements from
mixed types of applications.

Few disk scheduling algorithms exist with QoS in mind [6, 7]. YFQ [6] is an approxi-
mated version of Generalized Processor Sharing (GPS) [2] that allows each application to
reserve a fixed proportion of disk bandwidth. However, when the I/O workload from an
application becomes heavier, it cannot bound the maximum response time. Cello frame-
work [7] schedules I/O requests from heterogeneous types of clients including real-time
and best-effort applications. The drawback of the Cello framework is that it assumes the
existence of an accurate device model.

This paper proposes a new scheme which combines a feedback-controlled leaky bucket
with a fair queuing algorithm in order to deliver guaranteed storage service for applications
competing for shared storage. It not only assures an agreed-upon response time for each
application, but also maximizes the aggregate I/O throughput by proportionating the unused
bandwidth to other active applications. The feedback-controlled leaky bucket at the front-
end dynamically regulates I/O rates from each application. The fair queuing algorithm
at the back-end partitions a disk bandwidth among multiple I/O workloads from different
applications in a proportional manner. As a result, the proposed algorithm is expected to
assure a demanded response time as well as to maximize storage utilization. The remainder
of this paper is organized as follows. Section 2 describes basic assumptions and definitions
for the proposed scheme. Section 3 gives a detailed description on the proposed scheme.
Performance evaluations via simulation are given in Section 4. Finally, this paper concludes
with Section 5.

2 Preliminaries

Assumptions and Definitions: We begin by providing a set of assumptions and defi-
nitions to be used throughout this paper for clear descriptions. First, we assume that the
characteristics of an I/O workload featured by an average IOPS and an average request size
are known. Second, I/O requests access the underlying storage randomly. We denote the
underlying shared storage with �. Next, it is shared by a set of I/O workloads denoted
with �� � ������� �������. An I/O workload �� demands I/O performance level of
������� ��	
�� ���� for the shared storage �, where ��	
� is an average request size, �����
is an I/O arrival rate per second (briefly IOPS), and ��� is a demanded response time with
�����. Given I/O requests of size ��	
�, the response time of any I/O request is required
not to exceed ���, unless the current arrival I/O rate from �� is faster than �����. Given
the maximum IOPS of the storage denoted with 
������, we assume that it can pro-
vide �����
������ in a sustained manner. Denote with 
���� the sustained maximum
IOPS.

Simple Admission Control: Next, we describe how to systematically map demanded I/o
performance from an I/O workload1 and the underlying storage, called admission control.
Given �� � ������� ������� where �� requires performance of ������� ��	
�� ����, the

1Hereafter, we interchangeably use an application and an I/O workload.
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following procedure decides if or not underlying storage can guarantee the required dif-
ferent types of performance from ��. Figure 1 depicts this procedure graphically. In
Section 4, we will show how to seek those ����� and �� � values for two sets of I/O
workloads based on this procedure.
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Figure 1: Measuring deliverable target response time (�� � ) for a given target IOPS
(����� ) with a set of I/O workloads ��

� generate mixed I/O requests whose size is �	
�� with a probability of 	�
�������� ,
where ����� �

�
�

���
	�
��,

� find a response time ��� which is the 95th percentile of all response times whose
corresponding IOPS falls into ����� ,

� compute a target response time with a 20% margin as follows: �� � � ���� of
���, and

� if ��� � �� � for all 	, then it can be said that the underlying storage can guarantee
the performance requirements demanded from ��.

3 The Proposed Algorithm

3.1 Feedback-Controlled Leaky Bucket (FCLB)

The proposed algorithm consists of a feedback-controlled leaky bucket and YFQ disk
scheduling algorithm, as shown in Figure 2. The YFQ disk scheduling algorithm pro-
portionately partitions a disk bandwidth according to the assigned weight (�) among mul-
tiple I/O workloads, and then the feedback-controlled leaky bucket dynamically regulates
requests within each partition by controlling the token replenish rate ����. The feedback-
control module is composed of a monitor and controller. It controls the token replenish rate
���� parameter of the leaky bucket adaptively according to the current response time �����.
The controller increases �� when ��� goes below its demanded response time �����. Con-
versely, the controller decreases �� to its demanded IOPS �	�
��� maximumly. In addition,
when one I/O workload is inactive, the other can utilize the surplus left by the currently
inactive I/O workload.

Monitor: The monitor component is responsible for collecting the current response time
����� of each workload ���� at the end of each monitoring period, and feeding these results
to the controller.
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Figure 2: Architecture of the proposed algorithm

Controller: The controller compares the current response time ������ for the time win-
dow �������� ��� with the demanded response time �����, and computes the replenish rate
����� to be used during the next monitoring period ���� �� � ����.

1. For each workload 	 (0�	 
n) in the system, compute its error

����� � ��� � ������� � � 	 
 � (1)

where ��� is called the reference in control theory. More negative values of �����
represent larger response time violations.

2. Compute the replenish rate according to the integral control function (
 is a config-
urable parameter of the controller):

����� � ���� � �� �
����� (2)

3. Adjust the replenish rate ���� � �� in the previous control period to �����.

3.2 Feedback control loop in FCLB

Parameter 
 must to be tuned to prevent the replenish rate and measured response time
from oscillating excessively and for fast convergence of the output to the reference. This
can be done systematically with standard control theory techniques.

System Modeling: In general cases, all systems are non-linear. However, there are
equilibrium points where systems behave in a linear fashion. Accordingly, non-linear sys-
tems can be linearized at the points previously described in Section 2. We approximate the
controlled system with the linear model, as shown in Equation 3. The controlled system
includes the shared storage, leaky bucket, monitor and controller. The output is ��������
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and the input to the controlled system is the replenish rate ����� in the monitoring period
���� �� � ����.

����� � ��������� � �� ������� ���� � ��� (3)

The process gain, �, is the derivative of the output ����� � �� with respect to the input
�����. � represents the sensitivity of the response time with regard to the change in the
replenish rate.

�-Transform: Next, we transform the controlled system model to the �-domain, which
is amenable to control analysis. The controlled system model in Equations 2 and 3 is
equivalent to Equations 4 and 5. Figure 3 describes the flow of signals in the control loop.

����� �
�

� � �
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Figure 3: �-Transform of the control loop

Transfer Function: The whole feedback control system is modeled in the following
transfer function:

����� �
��������

� � ��������
(6)

�
	�

� � ���	��

Given the dynamic model of the closed loop system, we tune the control parameter 	 ana-
lytically using linear control theory, which states that the performance of a system depends
on the poles of its closed loop transfer function. The closed loop transfer function has a
single pole:


 � ��	� (7)

and the sufficient and necessary condition for system stability is:

�
� � � �� � � 	 �
�

�
(8)
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4 Performance Evaluations

This section provides the behavior and performance of the proposed algorithm which is
obtained from simulations. First, we describe simulation environments, I/O characteris-
tics of two competing I/O workloads and performance requirements each of I/O workloads
requires. Second, we will measure the I/O characteristics of the shared storage used in
the experiments and investigate the range where shared storage can provide service in a
stable manner. Third, given a set of competing I/O workloads and their performance re-
quirements, we will perform an admission control to decide whether or not the underlying
shared storage can assure the requirement. Fourth, we will determine experimentally two
parameters � and � for the feedback control in order to stabilize the system. Finally,
under a variety of conditions of the two I/O workloads, we will analyze the behavior and
performance of the proposed algorithm.

4.1 Simulation Environments

We implemented the proposed algorithm within the DiskSim simulator[14]. Table1 shows
the generic throttling parameters which are used for the experiments. In this table, ��

represents a rate of replenishing tokens. It is the same as the demanded maximum IOPS
for ��. �� means an amount of tokens that can be accumulated during an idle period. It
corresponds to the size of a bucket in a leaky bucket model. Actually, tokens (IOPS) of
��

�
are replenished every �

�
second. In our experiments, we will employ a time interval of

1 msec to replenish tokens to eventually allow I/O requests to pass through a throttling
module and 1000 msec to control the replenish rate. We also set YFQ weight to ��:��=2:1.
Two competing I/O workloads based on a closed model are synthetically generated, as
shown in Table2. The sizes of the I/O requests are distributed normally with a mean of 8
blocks. The performance of read and write is the same in a random I/O pattern, so that we
will perform experiments with only read requests. We use a single IBM DNES309170W
SCSI disk which serves arriving I/O requests in a FIFO manner.

Table 1: Throttling parameters for each experiment
Parameter �� ��

�� ( �����
�

) ��

�

��

�

Bucket Size (��) 8 4

4.2 I/O characteristics of the shared storage

In this subsection we investigate the I/O characteristics of shared storage to decide a set
of the replenish rate ���� where shared storage can provide service stably. The stable area
is spread over 75 IOPS, as shown in Figure4. The growth of response times is gradual
according to the increase of IOPS in this area. We respectively assign 40 and 20 IOPS to
each I/O workload.
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Table 2: Two competing I/O workloads
Parameter �� ��

����� 4KB 4KB
����� 40 20
�	� 35 msec 38 msec
access pattern Random Random
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���
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Figure 4: I/O characteristics of the shared storage with Random Read 4KB

4.3 Admission Control

After acquiring all the information about performance requirements from I/O workloads
and underlying storage, we will try to map each I/O workload described in Table2 to the
underlying storage. Recall the mapping methodology proposed in Section 2.

I/O requests of 4KB are issued increasingly to the corresponding reservation queue for
�����

�����
. We obtain IOPS versus RT chart as shown in Figure5. By analyzing Figure5 with

several steps given in Section 2, we can obtain the following parameter in Table3. Based
on 
��
� and �� � of each I/O workload in Table3, it can be said that the demanded level
of performance by given I/O workloads in Table2 can be deliverable with the underlying
storage. ��	 is internally used for the feedback control as a reference value.

�

��

��

��

��

��

� �� �� �� �� �� �� �� 	� 
�

��
�����

��
�
� �������

�������

RT1
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RT2
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+20%
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RT2
T
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Figure 5: Measuring deliverable target response time ��� � � for a given target IOPS
�
��
� � with two I/O workloads
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Table 3: Given I/O workloads and deliverable response time by underlying storage
Parameter ����� ��� �� �

�� 40 29.08 msec 34 msec
�� 20 31.38 msec 37 msec
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(a) Throughput and response time for Ac-
tive 40 IOPS
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(b) Throughput and response time for Ac-
tive 20 IOPS

Figure 6: Performance Experiment 1. - one I/O workload is inactive and the other is active

4.4 Control Parameters �	


Here, we determine the parameters � and 
. First, we approximate � by running a set
of shared storage profiling experiments, as shown in Section 4.2. We estimate that �=0.3
for the synthetic workload. Since the closed loop transfer function as shown in Equation
7 has a single pole � � � � 
�, we can set � to the desired value by choosing the right
value of 
. In our experiments, we set � � ���� by choosing 
 �

�����
�

� ����. In the
case of shared storage having a non-linear property whose I/O request service time is not
proportional to its data size, we determine that the location of the pole is a close to �� in
order to stabilize the system.

4.5 Performance Results

Under a variety of conditions of the two I/O workloads, we analyze the behavior of the
proposed algorithm and its resulting I/O performance.

Case 1 - One Inactive I/O workload : In this experiment, one I/O workload is inactive
and the other is active. Figure6(a)-(b) show time-plots of response time and throughput for
two I/O workloads when 20 and 40 IOPS I/O workload are inactive respectively. As the
graphs show, active I/O workload fully utilizes the shared storage by 72 IOPS on average.
The response time time-plot shows that active I/O workload receives its demanded response
time with a 5% violation. The degree of a response time violation seen by Figure6(b) is
higher than Figure6(a). This is because the reference of 20 IOPS workload which is used
to compute the error is larger than 40 IOPS.
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(b) Response time - 20 IOPS Step
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(c) Throughput - 40 IOPS Step
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(d) Response time - 40 IOPS Step

Figure 7: Performance Experiment 2. - one I/O workload begins after 30 seconds and the
other issues I/O requests continuously

Case 2 - One Step I/O workload : In this experiment, one I/O workload begins af-
ter 30 seconds and the other issues I/O requests continuously. Figure7(a)-(b) shows the
measured response time and throughput for 20 and 40 IOPS when 20 and 40 IOPS I/O
workload begins after 30 seconds, respectively. In Figure7, we observe that two competing
I/O workloads have its demanded response time in most cases except for 30 seconds where
one I/O workload issues I/O requests and achieves its demanded IOPS in all cases. Before
30 seconds YFQ allocates a full disk bandwidth for continuously issuing the I/O workload.
When one I/O workload comes on after 30 seconds, YFQ proportionately partitions a disk
bandwidth according to the assigned weight among I/O workloads. As a result, the I/O
workload allotted a full disk bandwidth has a high response time because it takes time for
its reservation queue to drain sufficiently so that the corresponding response time target can
be met. In this case, the response time violation is below 3 percent.

Case 3 - One Pulse I/O workload : In this experiment, one I/O workload repeats on
for 5 seconds and off for 5 seconds and the other issues I/O requests continuously. As the
graphs show, we can observe that two competing I/O workloads have its demanded IOPS
in all cases. However, there is a spike in the response time whenever a burst of requests
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(a) Throughput - 20 IOPS Pulse
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(b) Response time - 20 IOPS Pulse
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(c) Throughput - 40 IOPS Pulse
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(d) Response time - 40 IOPS Pulse

Figure 8: Performance Experiment 3. - one I/O workload repeats on for 5 seconds and off
for 5 seconds and the other issues I/O requests continuously

begins. The spike subsides quickly as soon as possible - within a two or three time window.
This tendency is due to a feature of YFQ explained in our previous experiment. The degree
of a response time violation seen by Figure8(b) is higher than Figure8(a). Also, this is due
to the same reason described in our first experiment. The response time violation is 12/6%,
3/19%, as shown in Figure8(a)-(b).

Case 4 - Two Active I/O workload : In Figure9, two Active I/O workloads have its
demanded IOPS and response time in most cases. In this case, the response time violation
is below 3% and two I/O workloads occur at approximately the same rate as YFQ weight,
that is 2:1.

Comparisons with Cello Framework [7]: The Cello framework heavily depends on the
accuracy of the underlying storage device model, whereas the proposed scheme operates
based on the measured performance of the underlying storage device. Thus, the proposed
scheme can be more portable and applicable. In addition, the Cello framework proportion-
ates unused storage performance by selecting pending I/O requests from the active appli-
cations in an ad-hoc order. However, the proposed scheme distributes the unused storage
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(b) Response time

Figure 9: Performance Experiment 4. - Two Active I/O workload

performance by adaptively configuring the replenishing rate of tokens at the leaky bucket
of each application based on the concrete theory given in Equations 1–8.

5 Conclusion and Future Work

We proposed a new scheme that combines a feedback-controlled leaky bucket with a fair
queuing algorithm in order to provide guaranteed storage service for different applications
competing for shared storage. The proposed scheme not only assures an agreed-upon re-
sponse time for each application, but also maximizes the aggregate I/O throughput by dis-
tributing the unused bandwidth to other active applications proportionally. We evaluated
the performance of the proposed scheme under various types of competing I/O workloads.
First, when an I/O workload becomes idle, we observed that the other workload could fully
utilize the surplus bandwidth unused and only 5% of all completed I/O requests missed the
agreed-upon response time. Second, when an I/O workload is backlogged again while the
other I/O workload is using the entire bandwidth, we observed that competing I/O work-
loads had their demanded response time in most cases except for 30 seconds where an
I/O workload issues I/O requests and achieved its demanded bandwidth in all cases. In
this case, the response time violation is below 3 percent. Third, when an I/O workload is
backlogged for a short period like a pulse while the other I/O workload is using the entire
bandwidth, a spike occurs in the response time whenever a burst of requests begins. In this
case, the proposed scheme revealed a lower performance than others. Finally, when both
I/O workloads are active, both I/O workloads can approximately share the bandwidth at a
rate of 2:1 and below 3% of all completed I/O requests missed the agreed-upon response
time. In summary, the simulation results with various types of competing I/O workloads
showed that the proposed algorithm provided a satisfactory level of response times; that
is, 6% violation on average for the demanded response times. In future work, we plan to
support workloads with multiple performance requirements that change over time.
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Abstract 

Growing data stockpiles and storage consolidation continue to be the trend.  So does the 
need to provide secure yet unconstrained, high bandwidth access to such repositories by 
geographically distributed users.  Conventional data management approaches, both at the 

local and wide area level, are viewed as potentially inadequate to meet these challenges. 
This paper explores methods deploying a new breed of Fibre Channel (FC) technology 

that leverages Internet Protocol (IP) infrastructures as the data transport mechanism, a 
step towards creating a “storage area network (SAN) grid”.  These technologies include 
products using the FC Over IP (FCIP) and the Internet FC Protocol (iFCP) protocols.  

The effort draws upon earlier work that concentrated on standard FC and internet SCSI 
(iSCSI) technologies.  In summary, the vendor offerings tested performed as expected 

and provided encouraging performance results.  However, their operational readiness still 
needs to be understood and demonstrated.  Installing and configuring the products was 
reminiscent of the early days of FC with driver and version compatibly issues surfacing 

once again.  Maturity will take some time. 
 
1. Introduction 

GSFC, as part of a continuing technology evaluation effort, continues its interest in SAN 
products and related technologies by evaluating and demonstrating the operational 

viability of new vendor offerings.  Under the auspices of the SAN Pilot, earlier testing 
has shown the advantages of high-speed transport mechanisms such as FC as well as the 
flexibility that iSCSI provides in deploying a SAN [1].  Subsequent testing is building 

upon this work, emphasizing higher speed campus backbones with a focus on 
manageability as well connectivity to geographically distributed sites.  Standardized 

benchmarks provide measurement of inherent link throughput.  In addition, the push is on 
to attract users with real applications that could benefit from these kinds of technologies  
 

The vision is direct access to data regardless of geographical location, using IP based 
wide area networks (WAN) as the transport mechanism. Such distributed storage, 

whether for disaster preparedness or for logical proximity to a compute server, pushes the 
operational requirements normally associated with direct-attached storage onto the WAN.  
The storage will be expected to be both reliable and high performance, and to behave like 

direct attached and physically local.  The vision promotes leaving data static and 
performing the necessary processing directly on a data store as opposed to moving large 

quantities of data between user facilities.  Connections would be temporal in nature with 
a corresponding service, such as the Storage Resource Broker (SRB) [2], to assist users in 
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locating relevant data.  The end result would be a SAN grid, analogous in many ways to 
more traditional grids currently gaining wide exposure.  This paper explores a variety of 

topics seen as contributing to the vision.  
 

2. SAN Pilot Infrastructure Description 
The core of the SAN Pilot (figure 1) is the connectivity between multiple, on-campus 
buildings at GSFC.  Traditional FC dominates the local GSFC infrastructure with a mix 

of 2 Gigabit/sec and 1 Gigabit/sec switches – Brocade 3800s and 2400s – providing ports 
for a variety of server and storage technologies.  Linux, Solaris and Apple hosts are 

represented.  RAID storage systems include a DataDirect Networks S2A6000, an Apple 
Xserve, an Adaptec/Eurologic SANbloc and a Nexsan ATABoy2.  A pair of Nishan IPS 
3000 Series Multiprotocol IP Storage Switches as well as a LightSand I-8100 augment 

the other switches by bridging the FC fabric to the IP network.  A pair of legacy Cisco 
SN5420s used for iSCSI work completes the topology.  The equipment is  mostly GSFC 

owned.  However, notable exceptions include the Nishan and LightSand IP switches. 
Cisco, Brocade and ADIC have also provided loaner equipment during the testing. 
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The Nishan and LightSand equipment provide IP connections to similar boxes at the 
University of Maryland Institute for Advanced Computer Studies (UMIACS), the San 

Diego Supercomputer Center (SDSC) and the National Center for Supercomputing 
Applications (NCSA).  The underlying networks have been key to the IP related testing.  
Local to GSFC, the primary backbone is the Science and Engineering Network (SEN) 

Figure 1 - SAN Pilot Infrastructure 
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[3].  Connection to UMIACS is attained by the Mid-Atlantic Crossroads (MAX) [4].  
MAX is also the jump off point to the Abilene Network [5] that completes the circuit to 

both NCSA and SDSC.  The result is full Gigabit Ethernet (GE) to all of the remote sites. 
 

2.1. SEN Network 
The SEN is a local, non-mission dedicated computer network with high-speed links to the 
Internet2’s Abilene and other Next Generation Internet (NGI) networks.  It serves GSFC 

projects/users who have computer network performance requirements greater than those 
allocated to the general-use, campus-wide Center Network Environment.  The majority of 

the SEN’s inter-building backbone links are 4 gigabits per second (Gbps), created using 
IEEE 802.3ad link aggregation standards with four separate GE connections between 
respective pairs of switches.  For desktop workstations and servers, as well as for its other 

inter-building and intra-building links, the SEN minimally provides GE LAN 
connections. Only jumbo frame-capable GE switches are used in the SEN’s 

infrastructure.  The 9000-byte sized Ethernet jumbo frames (maximum transmission unit 
or MTU) generally provide individual users with approximately six times better 
throughput performance as compared to networks only supporting standard 1500 MTUs.  

The SEN presently supports a 2 Gbps jumbo frame-capable link with the MAX point-of-
presence at the University of Maryland College Park.   

 
2.2. MAX Network 
The MAX is a multi-state metaPoP consortium founded by Georgetown University, 

George Washington University, the University of Maryland, and Virginia Polytechnic 
Institute and State University. The proximity of the MAX to Washington, D.C. places it 

in an advantageous location to partner with federal agencies as well as the business 
community and post-secondary institutions of DC, Maryland and Virginia.  MAX 
represents a pioneering effort in advanced networking, with the potential to rapidly 

incorporate a broad cross-section of the not-for-profit community. The MAX, the 
regional gigapop for access to the Abilene network and the NGI-East Exchange, provides 

the SEN with excellent WAN connectivity. 
 
2.3. Abilene Network 

The Abilene Network is an Internet2 high-performance backbone network that enables 
the development of advanced Internet applications and the deployment of leading-edge 

network services to Internet2 universities and research labs across the country. The 
network supports the development of applications such as virtual laboratories, digital 
libraries, distance education and tele- immersion, as well as the advanced networking 

capabilities that are the focus of Internet2. Abilene complements and peers with other 
high-performance research networks in the U.S. and internationally.  The current network 

is primarily an OC-192c (10 Gbps) backbone employing optical transport technology and 
advanced high-performance routers.  
 

3. FCIP and iFCP Technology 
Prior testing focused on standard FC and iSCSI technologies as it applied to on-campus 

connections and/or short distances.  Interest shifted to assessing the feasibility of 
constructing a geographically distributed SAN system.  This led to experimenting with 
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more suitable technologies, namely FCIP and iFCP.  Several products are available that 
exploit these protocols.  The two tested extensively were the IPS 3000 Series IP Storage 

Switch by Nishan Systems, now a part of the McData Corporation, and the i-8100 unit by 
LightSand Communications, Inc.  The following paragraphs give a brief overview of 

each of the products and summarize the current evaluation status. 
 
3.1. Nishan IPS 3000 Series IP Storage Switch 

The IPS 3000 and 4000 Series IP Storage Switches use standards-based IP and GE for 
storage fabric connectivity.  Nishan's Multiprotocol Switch supports iSCSI, iFCP, and 

E_Port for trunking to both IP backbones and legacy FC fabrics.  The IPS 3000 Series 
connects to a wide variety of end systems, including FC, NAS, and iSCSI initiators and 
targets.  The switch has a non-blocking architecture that supports Ethernet Layer 2 

switching, IP Layer 3 switching and FC switching over extended distances at full Gigabit 
wire speed. The Series also supports standard IP routing protocols such as open shortest 

path first (OSPF) and distance-vector multicast routing protocol (DVMRP) and can be 
fully integrated into existing IP networks. 
 

Three parameters assist in tuning the performance of the Nishan to a specific 
environment – Fast Write™ [6], compression [7] and MTU size.  When servers and 

storage are interconnected via a WAN using a pair of Nishans, the normal SCSI exchange 
(figure 2) required for a 1MB file write will break the data into multiple transfers thereby 
compounding the “round trip time (rtt)” effect.  In contrast, with Fast Write enabled, 

when the server sends the SCSI write command (figure 3) to set up the transfer, the local 
Nishan responds with a transfer ready specifying that the entire 1MB of data can be sent 

at once.  At the same time, the sending Nishan forwards the SCSI write command across 
the WAN so that the target can be prepared to receive data.  Having received the 1MB of 
data from the server, the sending Nishan streams the 1MB block across the WAN to the 

receiving Nishan. The receiving Nishan, in turn, mimics the normal command/response 
sequence for the transfers until all of the data is given to the target.  The Nishans do not 

spoof write completion. Instead, the actual status generated by the storage target is passed 
back through the network to the server. This guarantees that all data was actually written 
to disk. 
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The Nishan switch also features software based lossless compression.  The following 
options are available: 

Figure 2 - Normal SCSI Exchange for a 1MB Write 

Figure 3 - Fast Write Modified SCSI Exchange 
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• Off - Data going out of the port is not compressed. 

• On - Data going out of the port is always compressed using the appropriate 
algorithm to achieve maximum compression. 

• Auto - Depending on the available bandwidth, the switch dynamically decides 

whether or not to compress the data, the level of compression to apply and the 
compression algorithm to use. With the Auto setting, the port keeps the data rate 

as close as possible to the Port Speed of the port. 
 

The last key parameter is MTU.  The Nishan switches can support packet sizes up to 
4096 bytes, an increase of almost 3X over the nominal 1500.  The larger data payload 
results in less header processing overhead and better link utilization.  Packet sizes greater 

than 1500 bytes maximizes direct matching with FC originated frames. The full FC data 
payload of 2112 bytes can be delivered in a single jumbo, 4096 byte Ethernet frame.  The 

“auto” option for MTU setting allows Nishan switches to negotiate the best possible rate. 
 
Configuring the Nishan switch involves the interaction of two applications, the switch 

resident http GUI Element Manager and the host based (Linux or Solaris) SANvergence 
Manager application.  Between the two, devices to be shared are placed in commonly 

seen, exported zones.  The level of SAN merging is a cooperative effort between two or 
more switches.  As a default, a CLI is also available. 
 

3.2. LightSand i-8100 
The LightSand i-8100A is an intelligent gateway that provides connectivity between FC 

fabrics across an IP WAN infrastructure.  The i-8100A is an eight port, multi-protocol 
switch that provides isolation between FC SANs using Autonomous Region (AR) 
technology.  Conventional FCIP bridging devices link two sites by merging the FC 

fabrics together.  By maintaining Autonomous Regions, the i-8100A is able to share 
storage devices without merging fabrics.  In the diagram (figure 4), two autonomous 

regions are joined.  Each AR consists of four FC switches, the three original switches 
plus the gateway.  If these two SANs had been bridged by a simple FCIP gateway (non-
switching), the fabric would appear as six FC switches—all part of the same fabric.  The 

storage arrays labeled Disk 1 and Disk 2 are shared.  Once they have been imported into 
SAN 2, every initiator in SAN 2 can see the shared disks as if they were present in SAN 

2.  In reality, the I-8100A is performing Domain Address Translation (DAT) and the 
actual disks remain inside SAN 1.  Because of this technology, each fabric is isolated 
from any disturbances that might occur in the other fabric. 

 
The LightSand i-8100A employs the user datagram protocol (UDP) with an additional 

sequencing number to enable protection against packet-loss and mis-ordering.  This 
protocol is referred to as UDP/SR (UDP with Selective Retransmission).  Using UDP/SR, 
the i-8100A can be set for a desired WAN bandwidth.  It will instantly jump to that 

bandwidth and execute appropriate backpressure against the FC fabric, if the WAN 
bandwidth is less than the native FC bandwidth.  In the event that there is packet- loss on 

the WAN, the i-8100A will retransmit the lost data without throttling the bandwidth. 
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Configuring the LightSand switch requires running the SANman GUI on each of 
switches or using the available CLI. 

 
3.3. Evaluation Process and Results 

As evidenced by the work done at SDSC for last year’s Mass Storage conference [8], 
outstanding performance moving data over IP is achievable using a well-behaved, highly 
tuned network.  The tact taken at GSFC has been more the “every day”, out-of-the-box 

approach where nothing aggressive is done to enhance the performance of site-to-site 
WANS.  In more real world networks, the effects of rtt, congestion and packet loss can 

render an application useless that requires high bandwidth.  In the spirit of the SAN grid 
vision, laying a distributed file system, such as ADIC’s StorNext File System (SNFS) or 
SGI’s CXFS™, on the topology would further attenuate any irregularities. 

 
FCIP and iFCP testing has been a multi-step process: 

• Evaluate the technology on a local, campus basis under ideal network conditions. 

• Artificially introduce non-zero rtts, packet loss and congestion into the circuit, 

and observe the impact on performance. 

• Connect to a geographically distant center(s) and compare performance to 

predictions based on simulated distance testing. 
 
Testing was performance centered using standard benchmarks such lmdd [9] and IOzone 

[10] as the primary tools.  lmdd is good for quick, single threaded operations.  IOzone 
permits a variety of IO operations including writes, reads, mixed writes and reads, multi-

threaded operations, etc. all with options for setting attributes such as record and file size.  
The majority of the tests consisted of multiple IOzone operations described by the 
following script: 

 
./iozone_mod -i 0 - i 1 [-+d] -r 1m -s 16g -b one_thread 

1
1

22

SAN 1
SAN 2

i-8100A i-8100A

IP

Hosts in SAN 2 
believe that Disk 1 

and Disk 2 are locally 
attached to gateway.

Host 1

Figure 4 - LightSand Interconnect 
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./iozone_mod -t 2 -i 0 - i 1 [-+d] -r 1m -s 8g -b two_threads 

./iozone_mod -t 4 -i 0 - i 1 [-+d] -r 1m -s 4g -b four_threads 

./iozone_mod -t 8 -i 0 - i 1 [-+d] -r 1m -s 2g -b eight_threads 
 

The scripts steps through 1, 2, 4 and 8 threaded write/read operations and in aggregate 

moves 16 Gbytes.  IOzone was modified such that the [-+d] option would generate 
random data without doing the diagnostic byte-for-byte check of the data.  This was done 
to evaluate the efficiency of the Nishan compression algorithm while not impacting 

performance with verification process.  Tests were performed using mostly native file 
systems (ext2) with some minimal SNFS evaluation.   

 
 Network utilization was also monitored.  Data traffic cannot be at the expense and 
disruption of existing communication traffic.  At a minimum, the impact must be 

understood and anticipated.  Nishan and LightSand use two different approaches to how 
the data is transported so the resulting network perturbation varies. 

 
3.3.1. On-Campus Testing 
Testing began at GSFC with a pair of Nishan switches.  A Linux machine was FC 

connected to one of the Nishans co- located in the same building (figure 5).  The other 
Nishan, in a different building provided tie- in to the SAN Pilot and its associated RAID.  

Initial results, with zero rtt, compared favorably with the same tests using directly 
connected RAID. 

FC

IP

IP

Nishan

NIST
DelayNishan

FC FC FC

SEN

Linux

FC

FC

RAID

Bldg A

FC

Linux

 

The next step was to introduce set delays into the circuit using a NIST Net [11] network 

emulator to simulate the potential effects of geographically separating the two Nishan 
switches. The NIST Net network emulator is a general-purpose tool for emulating 
performance dynamics in IP networks. The tool is designed to allow controlled, 

reproducible experiments. By operating at the IP level, NIST Net can emulate the critical 
end-to-end performance characteristics imposed by various WAN situations (e.g., 

Figure 5 - Local GSFC Testing 
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congestion loss) or by various underlying subnetwork technologies (e.g., asymmetric 
bandwidth situations of xDSL and cable modems).  

 
Impressions 

Installation and configuration of the Nishan units was relatively straightforward with the 
assistance of the product support engineers.  Besides providing FC-IP translation, the 
Nishans are also full FC switches, an attribute that has different ramifications depending 

upon how the device is introduced into an existing SAN.  As a standalone switch with 
directly connected devices, as was the case for one end of the GSFC circuit, operation 

was clear with only the usual zoning decisions to be made.  The second switch was E-
port connected, a more complicated configuration which requires choosing how the 
Nishan was to interoperate with the existing SAN Pilot Brocade infrastructure.  Multiple 

options are available, so the ripple effect of zone changes, for example, need to be 
understood to avoid any unforeseen interruption of an operational SAN.  Setting up the 

zones and mapping devices was easily accomplished using SANvergence and the 
Element Manager. 
 

Large transfers (files) were required to overcome the buffering effects of the servers, the 
switches and the link.  With IOzone modified accordingly, a variety of tests were 

executed varying rtt and MTU size while going through the permutations of the Fast 
Write and compression settings.  Three observations were made: 

• Fast Write seems to have an overall positive effect on write performance with this 

likely being the default setting.  Nishan recommends setting to “on” for distances 
over 200km noting potential degradation if “on” for shorter distances. 

• Compression can have a positive or negative effect depending upon rtt.  
Compression processing significantly reduces throughput when rtt is small.  

Conversely, for large rtt compression enhances performance.  Nishan 
recommends the “auto” mode letting the switch dynamically determine the 
appropriate level of compression. 

• The effect of increasing MTU size from 1500 to 4096 was somewhat inconclusive 
but an odd jump was noted when both FastWrite and compression were turned 

“off”.  Intuitively the larger frames should improve performance but the suspicion 
is that the effects of a large rtt on the SCSI exchange may mitigate the gain.  This 

warrants further testing. 
In summary, settings are situation dependent.  This warrants exercising all the 
combinations before finalizing an installation.  To illustrate the point, the following 

graphs (figure 6 and 7) depict bandwidth as a function of threads for rtt=35msec for 
different MTUs, Fast Write and compression settings.  For MTU = 1500, the best write 

performance was for Fast Write, no compression while read was best for Fast Write with 
compression enabled.  Bumping the MTU to 4096 resulted in both the write and read 
numbers being best with Fast Write and compression disabled.  Incidentally, these 

parameters are changed using the Element Manager with each switch configured 
independently.  The implication is that unpredictable results may occur if the switches are 

not configured the same.  Overall, the write performance topped out at just slightly over 
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25 MB/sec while read approached 20MB/sec.  For the most part, running multiple threads 
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Figure 6 - Delay=35msec, MTU=1500 
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Figure 7 - Delay=35msec, MTU=4096 
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boosted aggregate throughput.  These numbers are in contrast to 86 MB/sec writes and 78 
MB/sec reads obtained running eight threads with rtt=0, MTU=1500 and both Fast Write 

and compression turned off. 
 

Future Testing 
Additional tests to be conducted include: 

• Run tests with a broader range of rtt values while changing configuration of the 

Nishan units.  This would give the full curve for bandwidth as a function of rtt. 

• Test the compression “auto” setting in contrast to the “on/off” results. 

• Induce deterministic packet loss and congestion, and measure the impact on write 
and read performance. 

 
3.3.2. Multi-site Testing 

The next series of tests involved different combinations of IP hardware and network 
connections to UMIACS, SDSC and NCSA.  Experiments focused mainly on building 
and exercising native file systems (ext2) with server/host and storage at opposite ends of 

the WAN link.  Some preliminary SNFS testing was also accomplished.  In all cases, the 
assessment centered on: 

• Gauging the impact of rtt or latency on performance in a real world setting where 
the network is potentially hostile. 

• Comparing measured maximum network bandwidth, as determined using nuttcp, 
with file system oriented traffic. 

 
3.3.2.1. UMIACS 
Last year, UMIACS participated with GSFC in distance testing using iSCSI technology.  

That effort involved a Linux box at UMIACS routed through a Cisco SN5420 at GSFC to 
the associated storage assets.  This time for comparison, one of the two loaner Nishan 

units was moved to UMIACS (figure 8).  Nishan-to-Nishan communication was 
established using the MAX network.  IOzone benchmarks were performed building a 
native ext2 file system on GSFC storage from an UMIACS resident Linux host. 
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Figure 8 - GSFC - UMIACS Configuration 
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Impressions 
Moving and establishing the Nishan to UMIACS connection was relatively simple.  

Network logistics provided the only significant obstacles.  Getting the Nishan 
configuration tools functioning in a new environment posed a minor nuisance.  Only 

certain browser/host combinations will run the Element Manager GUI.  Secondly, UMD, 
except in specific instances, blocks SNMP which led to establishing a virtual private 
network (VPN) for remote access to both Element Manager and SANvergence. 

 
Performing IOzone testing with random data yielded the following results (Table 1) for 

one, two, four and eight threaded operations.  These results are for an MTU size of 1500 
and a negligible rtt as registered by the Nishans. 

Table 1 - Results 

FW, Comp No FW, No Comp

Threads Write Read Write Read

one 12.8 9.5 38.6 14.1

two 12.9 11.7 47.3 19.8

four 12.8 11.6 28.9 20.6

eight 12.8 11.6 59.8 25.8  
 
Given the near zero rtt, the boxes ran best with both Fast Write and compression 

disabled.  As noticed in other testing involving the Nishan, compression processing 
effectively halves the bandwidth in applications involving small rtts.  The eight threaded 

write, 59.8 MB/sec, saturated the network given the available bandwidth, as measured by 
nuttcp [12], was 56.2MB/sec.  Reads topped out at 25.8MB/sec.  Single threaded IOzone 
tests saw 38.6MB/sec writes and 14.1MB/sec reads.  As it turns out, the WAN connection 

at UMIACS end is not full GE but rather a fractional allocation of a full GE.  By 
comparison to historical data, single threaded iSCSI operations using lmdd yielded 18MB 

writes and 12MB reads. 
  
Future Testing 

Additional tests to be conducted include: 

• Increase network bandwidth between GSFC and UMIACS to a full GE and 

reevaluate Nishan performance.  Given the almost negligible rtt, a significant 
performance jump is anticipated. 

• Connect storage to the UMIACS Nishan then test reads and writes originating at 
GSFC. 

• Exercise the UMIACS-to-SDSC connection and compare to the GSFC-to-SDSC 
results. 
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3.3.2.2. SDSC 
Testing with SDSC (figure 9) leveraged the in-place, SDSC Series 4000 switch.  WAN 

connection used the Abilene backbone with MAX as the local hopping off point for 
GSFC.  IOzone benchmarks were performed building a native ext2 file system on SDSC 

Sun storage from a GSFC resident Linux host. 
 

Impressions 
Set-up was straightforward with only the expected configuration items to be dealt with, 
namely network routing and allocating the appropriate zones, resolving SAN IDs, etc.  

However, the switches could not be made to operate in the jumbo frame (MTU=4096) 
mode, although the network was theoretically configured for such operation.  It was 

learned though trial and error that manually forcing the MTU setting to 4096 can result in 
very erratic behavior of the link including complete lock up.  The next two graphs  
(figures 10 and 11) illustrate performance as a function of the various Nishan settings for 

random versus static data. 
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Figure 10 - Random Data, MTU=1500 
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Figure 11 - Static Data, MTU=1500 
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The following data (Table 2) compares actual results of the GSFC-to-SDSC connection 
with test data using the NIST simulator with an equivalent rtt of 70msec.  In both cases, 

Fast Write and compression are turned on.  Note fair agreement in the data despite the 
difference in MTU sizes.  The suspicion is that the rtt impact on the SCSI command 

interchange dilutes the performance gains of jumbo frames. 
 

Table 2 - Results 

GSFC => GSFC GSFC => SDSC

rtt delay => 70msec rtt actual => 70msec

MTU => 4096 MTU => 1500

Threads Write Read Write Read

one 13.1 5.6 11.6 6.0

two 13.1 11.5 13.1 8.2

four 13.1 12.5 12.7 8.0  
 

Future Testing 
Additional tests to be conducted include: 

• Get jumbo frames (MTU=4096) working between GSFC and SDSC then 
reevaluate performance and compare to delay numbers.  Determine if the jump in 

performance was an anomaly related to the NIST emulator. 

• Exercise link in opposite direction – server/host at SDSC and storage at GSFC. 

• Exercise the SDSC-to-UMIACS connection and compare to SDSC-to-GSFC 

results. 
 

3.3.2.3. NCSA 
The IP connection with NCSA (figure 12) was accomplished using a pair of LightSand i-

8100s.  As with SDSC, WAN connection used the Abilene backbone with MAX as the 
local hopping off point for GSFC. IOzone benchmarks were performed building a native 
ext2 file system on NCSA DataDirect storage from a GSFC resident Linux host. 
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Figure 12 -  NCSA Configuration 
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Impressions 

Initial set-up was time consuming because of the learning curve of dealing with the 
LightSand equipment and establishing the network connection between GSFC and 

NCSA.  The LightSands required that the Brocade 3800 switches be at the 3.1 firmware 
level.  In addition, the command "portcfgislmode <port>,1" also had to be issued to the 
Brocades so that the switch ports connected to the 8100s would get the R_RDY set.  An 

inordinate amount time was spent trying to determine why the SANman GUI would not 
execute properly from a remote workstation (off campus with respect to GSFC).  As it 

turns out, NASA blocks external pings from open networks and the first thing the 
LightSand GUI requires is a successful ping to make sure the connection is in place.  
Once properly configured, the DataDirect Networks storage at NCSA was easily 

configured and accessed.  Using the same IOzone script as before, the following results 
(Table 3) where obtained for native, ext2 file transfers. 

 

Table 3 - Results 

rtt => 30msec 1MB block

Linux Host 1

Threads Write Read
one 37.0 12.1

two 37.5 28.9
four 37.3 35.6

eight 37.3 36.2  

 

These numbers are consistent with the theoretical maximums as predicted by the 
TimeCalc utility provided with the SANman.  An interesting although not perfect 

comparison is the 35msec rrt numbers obtained using the NIST Net network emulator 
and Nishan switches.  The best results with Fast Write and Compression turned off, was 
26MB/sec writes and 20 MB/sec reads.  It seems fair to presume, that running the 

Nishans in the “auto” compression mode may have improved those results. 
 

Future Testing 
Additional tests to be conducted include: 

• Exercise link in opposite direction – server/host at NCSA and storage at GSFC. 

• Get raw bandwidth numbers for the GSFC to NCSA link using nuttcp. 
 

4. Operational Users 
As to what might seem like a sidebar to the major thrust of the evaluation, the search for 

a relevant application of this technology, a geographically distributed file system, 
continues.  Two GSFC groups, the Scientific Visualization Studio (SVS) and the 
Advanced Data Grid (ADG) Project, are currently being pursued to provide on-campus 

operational proof of the various connectivity schemes.  The plan is to also involve 
UMIACS, SDSC and NCSA in relevant application demonstrations. 
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4.1. Scientific Visualization Studio 

The GSFC SVS has a need for approximately 1 TB of storage to use as an animation 
"scratch" area.  The content/data to be stored will be scientific visua lization animation 

frames in both HDTV and NTSC resolutions, and MPEG-1 and MPEG-2 movies in 
various resolutions from web to HDTV.  Relatively fast (high bandwidth) access to such 
volumes is required, including constantly writing frames, various types of processing 

(read/write) of frames, and streaming frames from this volume to the local SVS 
workstations for animation preview.  A Linux server in the SVS has an FC connection to 

the SAN Pilot.  
 
4.2. Advanced Data GRID Prototype 

In conjunction with NASA Ames, the ADG prototype is a new initiative that intends to 
leverage the availability of Landsat data  The mechanism for making the data available is 

the SAN Pilot connected to a Sun 3800 located on the GSFC campus. 
 
5. Supporting Technologies 

Other technologies are being evaluated to ease the administrative burden of SANs as well 
improve the performance of the chosen data transport mechanism.   The list includes SAN 

management software and a new generation of network interface (NIC) cards.  Also, the 
evolution of network attached storage (NAS) is also being monitored.  
 

5.1. SAN Management Software 
With the emphasis on connecting operational users, part of the testing has focused on 

SAN management software and tools.  The goal is to acquire a tool or suite of tools that 
enables efficient monitoring of the SAN health and utilization as well as providing for 
asset allocation and administration.  A mechanism is needed that readily discovers SAN 

components and provides a topology view of the infrastructure. 
 

Four such tools have been installed and evaluated: 

• BrightStor™ SAN Manager by Computer Associates International, Inc. 

• SANavigator® by SANavigator, Inc. a subsidiary of McData Corporation 

• SANScreen by Onaro, Inc. 

• Fabric Manager and WEB TOOLS by Brocade Communications Systems, Inc. 
 

The shortcoming of all such products seems to be coverage of all the needed versions of 
operating systems, and storage and interface devices, something not usually supported.  
Recognizing the new breed of FC and FC related products, such as Nishan and LightSand 

boxes, is sporadic  as well.  No one product seems to do it all.  Not tested but briefed was 
a StorageAuthority™ Suite from AppIQ, Inc.  It possesses some very rich capabilities 

worthy of consideration.  In the meantime, SANScreen was purchased and installed.  It 
will be important to observe how the product deals with a heterogeneous, near 
operational environment with ever evolving security constraints. 
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5.2. NIC Evaluation 
This testing is most relevant to iSCSI connected hosts.  The plan is for parametric 

evaluation of generic NICs versus TCP Off-Load Engine (TOE) NICs and TOE iSCSI 
NICs.  It will be key to measure end-to-end throughput performance and CPU utilization 

on hosts with different processor speeds.  The intent is to include cards from multiple 
manufacturers such as Intel, Adaptec, and Alacritech.   Testing is underway but not yet 
completed.  So far, getting the basic set-up configured and operational is proving to be a 

challenge. 
 

6. Summary 
In retrospect, the testing permutations became formidable when the multiple locations, 
potential rtt, equipment configurations and settings are factored in.  As a result, only a 

subset of possible hardware and software combinations were actually exercised.  
However, the size of the data sampling does not adversely impact the overall evaluation 

of the products.  Evaluating IP devices has been an educational process punctuated by 
learning new jargon and redefining the concept of a SAN while dealing with the  
unavoidable reality of the hardware and software incompatibilities, typical of emerging 

technology.  This class of product is mainly deployed in disaster recovery applications as 
opposed to file system applications.  As a result, empirical data for comparison was not 

readily available, leaving conversations and paper exercises as the basis for determining 
the validity of the  collected data.  A better understanding of theoretical maximums as 
they relate to SCSI transfers as a function of rtt versus the selected FC-IP protocol (FCIP 

or iFCP) is needed. 
 

The vendor products behaved admirably with one significant, non-performance concern.  
Security features were found to be lacking from a device management perspective  – no 
secure login, clear text passwords, etc.  To circumvent such shortfalls during the testing, 

network routing was altered and access lists were incorporated to minimize the perceived 
vulnerabilities.  Also, a desirable feature available at the data level for iSCSI is host 

authentication by the IP interface.  The following table (Table 4) presents a qualitative 
review of the Nishan and LightSand equipment: 
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Table 4 – Findings Summary 

IP Device Pros Cons 

General • Perform as advertised. 

• Operationally fairly 

intuitive. 

• Both GUI and CLI 

management options. 

• Administrator defined level 

of SAN merging/isolation. 

• Minimal security. 

• No ssh. 

• No CLI standard 

• Redundant, conflicting 
naming conventions. 

• Proprietary, same vendor 

product required at both ends 
of the WAN connection. 

• High skill level to configure, 
etc., multiple talents involved. 

• Incompatibilities, version 
issues, etc. reminiscent of the 

early days of FC. 
Nishan 3000 • Built in performance graphs. 

• Good statistical info. 

• Passwords in clear text. 

LightSand i-8100 • Companion applications that 
provide data analysis. 

• IP routes cleared by reboots. 

• Difficult to save and compare 

configurations. 

 
A sidebar to the qualitative aspects of the testing is that the majority of configuration, 
benchmarking, etc. was done remotely from third party locations, not at any of the 

centers.  Besides the obvious advantage of permitting geographic flexibility for the testers 
and vendors, it had the interesting side effect of revealing obstacles to deploying such a 

methodology for an operational IP based SAN.  In place site security procedures and 
firewalls had to be acknowledged and understood.  Blocked ports and disabled 
functionality had to be navigated.  Such activity led to a greater understanding of the 

equipment and what changes would be welcomed in the products. 
 

Certainly at one level the objective of the testing was met – to gain experience with data 
over IP devices.  Understanding the requirements being levied against a proposed SAN 
has always been critical, but the extra layer of configuration encountered installing FC-IP 

devices makes such planning even more necessary.  There is the usual FC zoning at the 
local SAN level but in addition, bridging disparate SANs requires designating which 

components – servers, storage, etc. – will be mutually shared by the co-joined SANs.  
This two-step mechanism, while adding to the rigor, ensures isolation and privacy of the 
local SAN while allowing the sharing of mutually agreed to assets.  Plans fell short in 

terms of evaluating a geographically distributed file system (SNFS and/or CXFS) 
encompassing GSFC, UMIACS, SDSC and NCSA, an outcome planned to be rectified in 

the near future.  These file systems have centralized agents that control their overall 
operation.  It will be interesting to track data movement performance (throughput ) as a 
function of where in the topology the agent is located and the latencies incurred in 

accessing it. 
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Abstract

Parallel scientific applications require high-performance I/O support from underlying file systems.

A comprehensive understanding of the expected workload is therefore essential for the design of

high-performance parallel file systems. We re-examine the workload characteristics in parallel com-

puting environments in the light of recent technology advances and new applications. We analyze

application traces from a cluster with hundreds of nodes. On average, each application has only one

or two typical request sizes. Large requests from several hundred kilobytes to several megabytes

are very common. Although in some applications small requests account for more than 90% of all

requests, almost all of the I/O data are transferred by large requests. All of these applications show

bursty access patterns. More than 65% of write requests have inter-arrival times within one millisec-

ond in most applications. By running the same benchmark on different file models, we also find that

the write throughput of using an individual output file for each node exceeds that of using a shared

file for all nodes by a factor of 5. This indicates that current file systems are not well optimized for

file sharing.

1. Introduction

Parallel scientific applications impose great challenges on not only the computational speeds but also

the data-transfer bandwidths and capacities of I/O subsystems. The U.S. Department of Energy Ac-
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celerated Strategic Computing Initiative (ASCI) projects computers with 100 TeraFLOPS, I/O rates

of 50–200 gigabytes/second, and storage system capacities of 0.5–20 PB in 2005. The projected

computing and storage requirements are estimated to 400 TeraFLOPS, 80–500 gigabytes/second,

and 3–20 PB in 2008 [2]. The observed widening disparity in the performance of I/O devices,

processors, and communication links results in a growing imbalance between computational per-

formance and the I/O subsystem performance. To reduce or even eliminate this growing I/O per-

formance bottleneck, the design of high-performance parallel file systems needs to be improved to

meet the I/O requirements of parallel scientific applications.

The success of file system designs comes from a comprehensive understanding of I/O workloads

generated by targeted applications. In the early and middle 1990s, significant research efforts were

focused on characterizing parallel I/O workload patterns and providing insights on parallel system

designs [1, 4, 7, 14]. The following decade has witnessed significant improvements in computer

hardware, including processors, memory, communication links, and I/O devices. At the same time,

systems are scaling up to match the increasing demands of computing capability and storage capac-

ity. This advance in technologies also enables new scientific applications. Together these changes

motivate us to re-examine the characteristics of parallel I/O workloads a decade later.

In our research, we traced the system I/O activities under three typical parallel scientific applica-

tions: the benchmark ior2 [6], a physics simulation, f1, running on 343 nodes, and another physics
simulation, m1, running on 1620 nodes. We study both static file system and dynamic I/O workload
characteristics. We use the results to address the following questions:

� What were the file sizes? How old were they?
� How many files were opened, read, and written? What were their sizes?
� How frequent were typical file system operations?
� How often did nodes send I/O requests? What were the request sizes?
� What forms of locality were there? How might caching be useful?
� Did nodes share data often? What were the file sharing patterns?
� How well did nodes utilize the I/O bandwidth?

The remainder of this paper is organized as follows: a brief overview of the related work is given

in Section 2. We then describe the tracing methodology in Section 3 and present our results in

Section 4. Finally, we conclude our paper in Section 5.

2. Related Work

The I/O subsystem has been a system performance bottleneck for a long time. In parallel scientific

computing environments, the high I/O demands make the I/O bottleneck problem even more severe.

Kotz and Jain [3] surveyed impacts of I/O bottlenecks in major areas of parallel and distributed

systems and pointed out that I/O subsystem performance should be considered at all levels of system

design.

Previous research showed that the I/O behavior of scientific applications is regular and predictable [7,

9]. Users have also made attempts to adjust access patterns to improve performance of parallel file

systems [13].
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There are several studies on file system workload characterizations in scientific environments [1,

4, 7, 8, 11]. They have shown that file access patterns share common properties such as large file

sizes, sequential accesses, bursty program accesses, and strong file sharing among processes within

a job. A more recent study [14] showed that applications use a combination of both sequential and

interleaved access patterns and all I/O requests are channeled through a single node when applica-

tions require concurrent accesses; we observe similar phenomena in one of the applications under

our examinations.

Pasquale and Polyzos [9] found that the data transfer rates ranges from 4.66 to 131 megabytes/sec

in fifty long-running large-scale scientific applications. They also demonstrated that the the I/O

request burstiness is periodic and regular [10].

Baylor and Wu [1] showed that the I/O request rate is on the order of hundreds of requests per sec-

ond; this is similar to our results. They also found that a large majority of requests are on the order

of kilobytes and a few requests are on the order of megabytes; our results differ in this regard.

Previous research has mainly investigated scientific workloads in the 1990’s, although technology

has evolved very quickly since then. We observed changes in large-scale scientific workloads, in

our study, and provided guidelines for future file system designs based on a thorough understanding

of current requirements of large-scale scientific computing.

3. Tracing Methodology

All the trace data in this study was collected from a large Linux cluster with more than 800 dual

processor nodes at the Lawrence Livermore National Laboratory (LLNL). A development version

of Lustre Lite [12] is employed as the parallel file system and the Linux kernel in use is a variant of

2.4.18.

3.1. Data Collection

Tracing I/O activities in large scale distributed file systems is challenging. One of the most critical

issues is minimizing the disturbance of tracing on the system behaviors. A commonly-used method

is to develop a trace module that intercepts specific I/O system calls—a dedicated node in the cluster

collects all trace data and stores them to local disks.

However, due to time limits, we chose a simpler approach: we employed the strace utility with
parameters tuned for tracing file-related system calls. The trace data are written to local files. We

rely on the local host file systems to buffer trace data.

This approach has two shortcomings: first, strace intercepts all I/O-related activities, including

parallel file system, local file system, and standard input/output activities. This results in relatively

large data footprint. Second, the strace utility relies on the local file system to buffer traced data.

This buffer scheme works poorly when the host file system is under heavy I/O workloads. In such a

scenario, the host system performance might be affected by the frequent I/Os of the traced data.

However, the strace utility greatly simplifies the tedious data collection process to a simple shell

script. More importantly, the shortcomings mentioned above were not significant in our trace col-
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Table 1. The ASCI Linux Cluster Parameters

Total Nodes (IBM x355) 960

Compute Nodes 924

Login Nodes 2

Gateway Nodes 32

Metadata Server Nodes 2

Processor per Nodes (Pentium 4 Prestonia) 2

Total Number of Processors 1920

Processor Speed (GHz) 2.4

Theoretical Peak System Performance (TFlops) 9.2

Memory per Node (GB) 4

Total Memory (TB) 3.8

Total Local Disk Space (TB) 115

Nodes Interconnection Quadrics Switch

lection because of the large I/O requests and the relatively short tracing periods. As we discuss in

Section 4, I/O requests in such a large system are usually around several hundred kilobytes to several

megabytes. Even in the most bursty I/O period, the total number of I/Os per node is still around tens

of requests per second. Up to one hundred trace records will be generated on each node per second

on average. Buffering and storing these data only has a slight impact on the system performance.

Moreover, instead of tracing the whole cluster, we only study several typical scientific applications.

Those applications are usually composed of two stages: the computation phase and the I/O phase.

The typical I/O stage ranges from several minutes to several hours. During this period, each node

usually generates several hundred kilobytes of trace data, which can be easily buffered in memory.

3.2. Applications and Traces

All of the trace data were collected from the ASCI Linux Cluster in Lawrence Livermore National

Laboratory. This machine is currently in limited-access mode for science runs and file system

testing. It has 960 dual-processor nodes connected through a Quadrics Switch. Two of the nodes

are dedicated metadata servers and another 32 nodes are used as the gateways for accessing a global

parallel file system. The detailed configuration of this machine is provided in table 1 [5]. We traced

three typical parallel scientific applications during July, 2003. The total size of the traces is more

than 800 megabytes.

The first application is a parallel file system benchmark, ior2 [6], developed by LLNL. It is used for
benchmarking parallel file systems using POSIX, MPIIO, or HDF5 interfaces. Basically it writes

a large amount of data to one or more files and then reads them back to verify the correctness of

the data. The data set is large enough to minimize the operating system caching effect. Based

on different file usages, we collected three different benchmark traces, named ior2-fileproc, ior2-
shared, and ior2-stride, respectively. All of them ran on a 512-node cluster. ior2-fileproc assigns an
individual output file for each node, while ior2-shared and ior2-stride use a shared file for all the
nodes. The difference between the last two traces is that ior2-shared allocates a contiguous region
in the shared file for each node, while ior2-stride strides the blocks from different nodes into the
shared file.
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The second application is a physics simulation run on 343 processes. In this application, a single

node gathers a large amount of data in small pieces from the others nodes. A small set of nodes then

write these data to a shared file. Reads are executed from a single file independently by each node.

This application has two I/O-intensive phases: the restart phase, in which read is dominant; and the

result-dump phase, in which write is dominant. The corresponding traces are named f1-restart and
f1-write, respectively.

The last application is another physics simulation which runs on 1620 nodes. This application use

an individual output file for each node. Like the previous application, it also has a restart phase and a

result-dump phase. The corresponding traces are referred as m1-restart and m1-write, respectively.

3.3. Analysis

The raw trace files required some processing before they could be easily analyzed. Some unrelated

system calls and signals were filtered out. Since each node maintained its own trace records, the raw

trace for each application is composed of hundreds of individual files. We merged those individual

files in chronological order. Thanks to the Quadrics switch, which has a common clock, the traced

time in those individual trace files was globally synchronized. Our analysis work, such as request

inter-arrival time, have been greatly simplified by sorting all requests into a chronologically sorted

trace file.

A good understanding of file metadata operation characteristics is important, however, our traces

are not large enough to capture general metadata access patterns. Therefore, we focus more on file

data I/O characterization in the following section.

4. Workload Characteristics

We present the characteristics of the workloads, including file distributions and I/O request prop-

erties. We study the distributions of file size and lifetimes and show the uniqueness of large-scale

scientific workloads. We focus on three typical applications as described in Section 3.2 and examine

the characteristics of I/O requests, such as the size and number of read and write requests and the

burst and the distribution of I/O requests on various nodes.

4.1. File Distributions

We collected file distributions from thirty-two file servers that were in use for the ASCI Linux cluster

during the science runs phase. Each file server has storage capacity of 1.4 terabytes. The file servers

were dedicated to a small number of large-scale scientific applications, which provides a good model

of data storage patterns. On average, the number of files on each file server was 350,250, and each

server stored 1.04 terabytes of data, more than 70% of their capacity. On most of the file servers, the

number and capacity of files are similar except for five file servers. Table 2 displays statistic values

of the number and capacity of files on these servers, including mean, standard deviation (std. dev.),

median, minimum (min) and maximum (max).

Figure 1(a) presents file size distributions by number and file capacity. The ranges of file sizes

are sampled from 0–1 Byte to 1–2 Gigabytes. Some of the partitions were merged due to space

limitations. We observed that over 80% of the files are between 512 kilobytes and 16 megabytes in
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Table 2. File Numbers and Capacity of the 32 File Servers

Number Capacity
mean 305,200 1044.33 GB

standard deviation 75,760 139.66 GB

median 305,680 1072.88 GB

minimum 67,276 557.39 GB

maximum 605,230 1207.37 GB
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Figure 1. Distribution of Files

size and these files accounted for over 80% of the total capacity. Among various file size ranges,

the most noticeable one is from 2 megabytes to 8 megabytes: about 61.7% of all files and 60.5% of

all bytes are in this range.

We divided file lifetimes into 9 categories: from 0–1 day to 52 weeks and older. As illustrated in

figure 1(b), 60% of the files and 50% of the bytes lived from 2 weeks to 8 weeks, while 6.6% of the

files and 7.3% of the bytes lived less than one day. The lifetime of the traced system is about 1 year

so no files lived longer than 52 weeks.

4.2. I/O Request Sizes

Figure 2 shows the cumulative distribution function of request sizes and request numbers. Since

all three ior2 benchmarks have identical request size distributions, we only show one of them. As
shown in Figure 2(a), ior2 has only an unique request size of around 64 kilobytes.

Figure 2(b) shows the write request size distribution of the result-dump stage in the physics simu-

lation, f1. Almost all the write requests are smaller than 16 bytes, while almost all the I/O data are
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Figure 2. Cumulative Distribution Functions (CDF) of the Size and the Number of I/O
Requests (X axis-logscale). The read num and write num curves indicate the fraction of
all requests that is smaller than the size given in X axis. The read size and write size
curves indicate the fraction of all transferred data that live in requests with size smaller
than the value given in the X axis.

transferred in the requests with sizes larger than one megabyte. This turns out to be a common I/O

pattern of scientific applications: a master node collects small pieces of data from all computing

nodes and writes them to data files, which results in a huge number of small writes. Other nodes

read and write these data files in very large chunks then. There are so few read requests in the result-

dump stage and write requests in the restart stage that we actually ignore the read request curves in

figure 2(b) and the write request curves in figure 2(c).

Figure 2(d) and figure 2(e) show the same write request distribution in the restart and result-dump

stages of the physics simulation, m1. The two spikes in the write num curves indicate two major
write sizes: 64 kilobytes and 1.75 megabytes, respectively. Each of them accounts for 50% of all

write requests. More than 95% of the data are transfered by large requests, which is also shown in

Figures 2(d) and 2(e). Reads in m1 are dominated by small requests less than 1 kilobytes. However,
a small faction (less than 3%) of 8 kilobyte requests still accounts for 30% of all read data transfer.

This is similar to the read distribution in Figure 2(e): only 5% of the read requests contribute to 90%

of all data read.
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4.3. I/O Accesses Characteristics

Figure 3–5 show I/O accesses characteristics over time. The resolution for these figures is 1 second

except figure 4(a), which uses a resolution of 50 seconds. Figure 3 shows that the request number

distribution and the request size distribution are almost identical in ior2 due to the fixed size re-
quests used in those benchmarks. The ior2-fileproc benchmark, using the one-file-per-node model,
presents the best write performance. Up to 150,000 write requests per second, totaling 9 gigabytes

per second, are generated by the 512 nodes. However, the ior2-shared and ior2-stride benchmarks
can only achieve 25,000 write requests per second, totaling 2 gigabytes per second. These two

benchmarks use the shared-region and the shared-stride file model, respectively. We believe that

the performance degradation is caused by the underlying file consistency protocol. This result is

somewhat counterintuitive. The shared-region file model appears to be similar to the one-file-per-

node model because the contiguous regions in the former can be analogous to the separate files in

the latter. Therefore, their performance should be comparable as well. The severe performance

degradation implies that the shared-file model is not optimized for this scenario.

After a write, each node reads back another node’s data as soon as it is available. The gaps between

the write and read curves in each sub-figure reflect the actual I/O times. Obviously, the ior2-fileproc
benchmark demonstrates much better performance: only 10 seconds are used in this model, while

more than 20 seconds are needed to dump the same amount of data when using the shared file model.

Since reads must be synchronous, we can easily figure out the file system read bandwidth from the

read size curve. The ior2-fileproc and ior2-shared benchmarks have comparable read performance.
However, the ior2-stride has the worst read performance, which is only 100 megabytes per second
for 512 nodes. This result is not surprising: the stride data layout in shared files limits the chances

of large sequential reads.

Figure 4 shows the I/O access pattern of the application f1. As we mentioned before, f1-write has
very few reads and f1-restart has very few writes. Therefore, we can ignore those requests in the
corresponding figures. In Figure 4(a), we chose a resolution of 50 seconds because it becomes

unreadable if we use finer time resolutions. The spike of the write-num curve is caused by the
activities of the master node to collect small pieces of data from other computing nodes. At its peak

time, nearly 1 million file system requests are issued per second. However, due to the very small

request size (8 to 16 bytes), this intensive write phase contributes negligable amounts of data to the

overall data size. In the rest of the application, large write requests from 48 nodes dominate the

I/O activities. Requests are issued in a very bursty manner. Figure 4(b) zooms in a small region of

Figure 4(a) by 1 second resolution. It shows that sharp activity spikes are separated by long idle

periods. At the peak time, up to 120 megabytes per second of data are generated by 48 nodes. In

the restart phase of f1, read requests become dominant. However, both the number and the data size
of read requests are small compared to those in the write phase.

Figure 5 presents the I/O access pattern of the physics application m1. It demonstrates very good
read performance: nearly 28 gigabytes per second bandwidth can be achieved by 1620 nodes, thanks

to the large read size (1.6 megabytes – 16 megabytes). Like f1, its write activities are also bursty.
We observed that the write curves have similar shapes in figure 5. They all begin with a sharp spike

followed by several less intensive spikes. One possible explanation is that the file system buffer

cache absorbs the coming write requests at the begin of the writes. However, as soon as the buffer

is filled up, the I/O rate drops to what can be served by the persistent storage.
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Figure 3. I/O Requests over Time for ior2 Benchmarks
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Figure 4. I/O Requests over Time for f1 Application

4.4. I/O Burstiness

To study I/O burstiness, we measure I/O request inter-arrival times. Figure 6 shows the cumulative

distribution functions (CDF) of I/O request inter-arrival times. Note that the x-axis is in the loga-

rithmic scale. Write activities are very bursty in the ior2 benchmarks and the f1 application: over
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Figure 5. I/O Requests over Time for m1 Application

65–100% of write requests have inter-arrival times within 1 millisecond. In ior2 and f1, most of the
write activities are due to memory dump and I/O nodes can issue write requests quickly. However,

write activities on m1 are less intensive than those on ior2 and f1

On the other hand, read requests are generally less intensive than write requests because reads are

synchronous. In particular, Figure 6(c) indicates that ior2 under shared-strided files suffers low read
performance, as described in Section 4.3. In this scenario, data are interleaved in the shared file and

read accesses are not sequential.

4.5. I/O Nodes

In this section, we study the distributions of I/O request sizes and numbers over nodes, as shown in

Figure 7. For the ior2 benchmarks, read and writes are distributed evenly among nodes, as shown
in Figures 7(a) and 7(b), because each node executes the same sequence of operations in these

benchmarks.

In the physics application f1, a small set of nodes write gathered simulated data to a shared file.
Therefore, only a few nodes have significant I/O activity in their write phase and most of the trans-

fered data are from large write requests (14% of the write requests), as shown in Figures 7(c)

and 7(d). There is little read activity in the write phase. However, read requests are evenly dis-

tributed among nodes in the restart phase and their sizes are around 1 megabyte, as shown in Fig-

ures 7(e) and 7(f). There is little write activity in the restart phase.

In the restart and write phases of the physics application m1, I/O activity is well balanced among
nodes, as shown in Figures 7(g)–7(j). We also observe significant write activity in the restart phase.
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Figure 6. Cumulative Distribution Functions (CDF) of Inter-arrival Time of I/O Requests
(X axis-logscale)

Table 3. File Open Statistics

Overall Number of File Opens Number of Data File Opens
Applicatons

Read/Write Read Write Read/Write Read Write
ior2 6,656 5,121 0 1,024 0 0

f1-write 3,871 6,870 718 98 10 34

f1-restart 3,773 6,179 0 0 343 0

m1-restart 17,824 22,681 12,940 0 1,620 12,960

m1-write 17,824 21,061 12,960 0 0 12,960
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Figure 7. Cumulative Distribution Functions (CDF) of the Size of I/O Requests over
Nodes

150



Table 4. Operations During File Open

Avg. open time Avg. IOs per Open Avg. IO Size per Open
Applications

Overall Data File Overall Data File Overall Data File
ior2-fileproc 0.4 sec 4.5 sec 44.4 512.0 2.8 MB 32.8 MB

ior2-shared 0.7 sec 5.2 sec 44.4 512.0 2.8 MB 32.8 MB

ior2-stride 7.6 sec 26.57 sec 44.4 512.0 2.8 MB 32.8 MB

f1-write 20.2 sec 504.9 sec 14.8 142161 2.4 MB 3993.5 MB

f1-restart 0.02 sec 0.1 sec 0.5 1 � � 1 MB � � 1 MB

m1-restart 1.2 sec 3.9 sec 4.2 15.3 3.7 MB 8.5 MB

m1-write 1.2 sec 2.4 sec 4.3 17 3.1 MB 6.5 MB

4.6. File Opens

In this section, we study the file open patterns of the applications. We use the term data files to refer
to those files that actually store results dumped from applications.

In all applications, files tend to be opened as read/write or read-only. We only observe significant

write-only files in the physics application m1, as shown in table 3. However, the data files are
opened either read-only or write-only except for the benchmark ior2. The open operations on the
data files only account for a small portion of the overall files opened. Given the fact that the data

file operations dominate the overall I/O, the small number of data file opens implies longer open

time and more I/O operations during each open. As listed in table 4, the open duration of data files

ranges from several seconds to several hundred seconds, which is typically 2 to 20 times longer than

overall file open durations. The average number of operations and the size of data files on each open

operation are also much larger than those on the overall files. For example, up to 400 MB data are

transferred during each data file open in physical application f1-write.

5. Conclusion

In this study, we analyze application traces from a cluster with hundreds of processing nodes. On

average, each application has only one or two typical request sizes. Large requests from several

hundred kilobytes to several megabytes are very common. Although in some applications, small

requests account for more than 90% of all requests, almost all of the I/O data are transferred by

large requests. All of these applications show bursty access patterns. More than 65% of write

requests have inter-arrival times within one millisecond in most applications. By running the same

benchmark on different file models, we also find that the write throughput of using an individual

output file for each node exceeds that of using a shared file for all nodes by a factor of 5. This

indicates that current file systems are not well optimized for file sharing. In all those applications,

almost all I/Os are performed on a small set of files containing the intermediate or final computation

results. Such files tend to be opened for a relatively long time, from several seconds to several

hundred seconds. And a large amount of data are transferred during each open.
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Abstract

The advances in network technology and the growth of
the Internet together with upcoming new applications like
peer-to-peer (P2P) networks have led to an exponential
growth of the stored data volume. The key to manage this
data explosion seems to be the consolidation of storage sys-
tems inside storage area networks (SANs) and the use of a
storage virtualization solution that is able to abstract from
the underlying physical storage system.

In this paper we present the first measurements on an
out-of-band storage virtualization system and investigate
its performance and scalability compared to a plain SAN.
We show in general that a carefully designed out-of-band
solution has only a very minor impact on the CPU usage
in the connected servers and that the metadata manage-
ment can be efficiently handled. Furthermore we show that
the use of an adaptive data placement scheme in our vir-
tualization solution V:Drive can significantly enhance the
throughput of the storage systems, especially in environ-
ments with random access schemes.

1. Introduction

The advances in networking technology and the growth
of the Internet have enabled and accelerated the emergence
of new storage consuming applications like peer-to-peer
(P2P) networking, video-on-demand, and data warehous-
ing. The resulting exponential growth of the stored data
volume requires a new storage architecture, while the man-
agement of the traditional, distributed direct attached stor-
age (DAS) architecture has shown to be intractable from
a business perspective. The first step towards this new
storage architecture is the consolidation of the servers and
storage devices inside a storage area network (SAN). In a

�Partially supported by the DFG Transferbereich 40 and the Future
and Emerging Technologies programme of the EU under contract number
IST-1999-14186 (ALCOM-FT).

SAN, the formerly fixed connections between storage and
servers are broken-up and both are attached to the high-
speed dedicated storage network. The introduction of a
storage area network can significantly improve the reliabil-
ity, availability, manageability, and performance of servers
and storage systems.

Nevertheless, it has been shown that the potential of a
SAN can only be fully exploited with the assistance of stor-
age management software, and here particulary with the
help of a virtualization system. Storage virtualization is of-
ten seen as the key technology in the area of storage man-
agement. But what actually is storage virtualization? A
good definition has been given by the Storage Networking
Industry Association SNIA [8]:

”[Storage virtualization is] an abstraction of storage that
separates the host view [from the] storage system imple-
mentation.”

This abstraction includes the physical location of a data
block as well as the path from the host to the storage sub-
system through the SAN. Therefore, it is not necessary that
the administrator of a SAN is aware of the distribution of
data elements among the connected storage systems. Gen-
erally, the administrator only creates a virtual volume and
assigns it to a pool of physical volumes, where each physi-
cal volume can be of different size. Then, a file system or a
database can work upon this virtual volume and the virtu-
alization software provides a consistent allocation of data
elements on the storage systems. It is even possible that a
large number of virtual volumes share a common storage
pool.

The use of a virtualization environment has many advan-
tages compared to the traditional approach of assigning an
address space to a fixed partition. The most obvious one is
that a virtual disk can become much larger than the size of
a single disk or even than a single RAID-system [7]. When
using virtualization software, the size of a virtual disk is
only limited by the restrictions inherent to the operating
system and the total amount of available disk capacity.

Another important feature of virtualization software is a
much better utilization of disk capacity. It has been shown
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that in the traditional storage model only 50% of the avail-
able disk space is used. The disk utilization can be in-
creased up to 80% through the central and more flexible ad-
ministration of virtualization software. Thus, the required
storage capacity and, with it, the hardware costs of a stor-
age area network can be reduced significantly. Further-
more, virtualization software offers new degrees of flexi-
bility. Storage systems can be added to or removed from
storage pools without downtime, thus enabling a fast adap-
tation to new requirements. These storage systems do not
have to be from a single vendor, so that the traditional
vendor-locking of customers can be avoided.

Virtualization software can be implemented as out-of-
band virtualization or in-band virtualization, inside the
storage subsystems, or as logical volume manager (LVM)
inside the hosts. In an out-of-band virtualization system,
the virtualization is done inside the kernel of the hosts and
all participating hosts are coordinated by one or more ad-
ditional SAN appliance. In this paper we will focus on the
analysis of our out-of-band solution V:Drive.

Chapter 2 of this paper introduces the design of V:Drive.
In chapter 3 we present the first measurements on an out-of-
band storage virtualization system and investigate its per-
formance and scalability compared to a plain SAN. We
show that a carefully designed out-of-band solution has
only a very minor impact on the CPU usage in the con-
nected hosts and that the metadata management can be ef-
ficiently implemented. Furthermore we give evidence that
the use of an adaptive data placement scheme can signif-
icantly enhance the throughput of storage systems, espe-
cially in environments with random access schemes.

2. V:Drive Design

In this chapter we will describe the design of our out-
of-band virtualization solution V:Drive. From the architec-
tural perspective, V:Drive consists of a number of coop-
erating components: one or more SAN appliances which
are responsible for the metadata management and the co-
ordination of the hosts (see section 2.2), the virtualization
engine inside the kernel of the hosts (see section 2.3), and
a graphical user interface (GUI).

From a logical point of view, V:Drive offers the ability
to cluster the connected storage devices into storage pools
that can be combined according to their age, speed, or pro-
tection against failures. Each storage pool has its own stor-
age management policy describing individual aspects like
logical and physical block size or redundancy constraints.
A large number of virtual volumes can share the capacity
of a single storage pool.

The capacity of each disk in a storage pool is partitioned
into minimum sized units of contiguous data blocks, so
called extents. The extent size need not be constant inside a

storage pool and can change over time. In general, smaller
extents can guarantee better load balancing, while bigger
extents result in a smaller management overhead and less
disk head movements in case of sequential accesses. The
extents are distributed among the storage devices according
to the Share strategy which is able to guarantee an almost
optimal distribution of the data blocks across all participat-
ing disks in a storage pool (see Section 2.1).

2.1. The Share-Strategy

Any virtualization strategy depends on the underlying
data distribution strategy. Such a distribution is challenging
if the system is allowed to contain heterogeneous storage
components. The main task of a distribution strategy is an
even distribution of data blocks and an even distribution
of requests among the storage devices. Therefore, it has a
strong impact on the scalability and the performance of the
SAN. It can be shown, that a static data placement scheme
is generally not able to fulfill the given requirements.

We have developed a new adaptive distribution scheme
that has been implemented in V:Drive, called Share-
strategy [2]. In this paper we will present Share with-
out data replication. Of course it is possible to support
replication inside Share, e.g. by a scheme proposed in
[4]. For other static and dynamic placement schemes, see
[6, 3, 4, 5].

Share works in two phases. In the first phase, the algo-
rithm reduces the problem of mapping extents to heteroge-
neous disks to a number of homogeneous ones. The result
is a number of volumes which are equally likely to store
the requested extent. In the second phase, we use any dis-
tribution strategy that is able to map extents to equal sized
disks (see e.g. [6]).

The reduction phase is based on two hash functions � �
��� ������ � ��� �� and � � ��� ���� �� � ��� �� where M
is the maximal number of extents in the system and N is the
maximal number of disks that are allowed to participate,
respectively.

1

1
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I

I
I

g(1) g(2) g(3)g(4)

4I

h(b)0

Figure 1. Hashing scheme in Share

The reduction phase works as follows: Initially or af-
ter every change in the system configuration, we map the

154



starting points of sub-intervals of certain length into a [0,1)
interval using the hash function g. The length of these sub-
intervals �� corresponds to the capacity �� of disk i. To
ensure that the whole interval is covered by at least one
sub-interval we need to stretch each of the sub-intervals by
a factor s. In other words, the sub-interval � � starts at ����
and ends at ����� � � � ��� mod 1.

The extents are hashed into the same interval using h
where the quality of h ensures an even distribution of all
extents over the whole interval. Now, an extent can be ac-
cessed by calculating its hash value and then deriving all
sub-intervals that value falls into. Any efficient uniform
strategy can be applied to get the correct disk out of the
number of possible candidates. It can be shown that the
fraction of extents stored on a disk and the number of re-
quests to a disk are proportional to its capacity and that the
number of extent replacements in case of any change in the
number or kind of disks is nearly minimal (see [2] for more
detail).

2.2. SAN Appliance and Metadata Management

To ensure a consistent view of the SAN and a proper
configuration of the hosts and storage devices, one or more
SAN appliances are connected to the SAN. The appliances
keep track of all necessary metadata structures. These
metadata include among others the partitioning of the stor-
age devices into storage pools and virtual volumes, access
rights of the hosts, and the allocation of extents on the stor-
age devices.

The metadata appliance consists of a number of separate
modules which are arranged around the V:Drive database,
including the Disk-Agent, the Host-Interface, the Disk-
Manager, and the Administration Interface. The interface
to the database is standard SQL, implemented in many
commercial and free databases. All components of the ap-
pliance can be executed on a single machine or can run in
a distributed fashion.

Information about the state of the SAN are collected by
the Disk-Agent that is responsible for detecting disk parti-
tions and for finding changes in the system configuration.
Each newly detected suitable partition is labelled with a
unique ID and is made available by updating the database.

The Host-Interface is connected to the servers via Eth-
ernet/IP. A data transfer between a server and the host in-
terface is issued if the configuration of the SAN has been
changed, if the server has started and has to load its con-
figuration, or if the server accesses a virtual address for the
first time and has to allocate an extent on the corresponding
disk.

If the configuration of the storage system changes, a
small number of extents has to be redistributed in order
to guarantee close to optimal performance. The Disk-

Manager is responsible for this redistribution tasks. Af-
ter each change of a storage pool it checks each allocated
extent if it has to be relocated. In such a case, the extent
is moved online to its new location in a way that ensures
the consistency of the data before, during, and after the re-
placement process.

The administrator can access the metadata via the graph-
ical user interface. The administration interface contains
all the necessary functionality to manage enterprise wide
storage networks: administration of storage systems, stor-
age pools, and virtual devices, authentication and autho-
rization, security, and statistics.

2.3. Kernel Integration

The host software basically consists of a kernel module
which is linked to the operating system of the participat-
ing servers and some additional applications running in the
user space. Currently, modules for the Linux kernel ��� and
��� are available.

If a data block needs to be read from a virtual disk, the
file system generates a block I/O request and passes it to
the kernel module where it is processed and transmitted to
the appropriate physical disk. To perform the transforma-
tion from a virtual address to a physical address, the kernel
keeps all necessary information, like existing storage pools,
assignments of virtual and physical disks to the pools, stor-
age policies etc. These information are given to the kernel
initially or on-demand by the metadata server.

3. Results

In this section we will present the experimental results
of our virtualization approach. The test system consists of
two Pentium servers connected to an FC-AL array with 8
fibre channel disks. Both servers have 2 Pentium II proces-
sors with 450 MHz and 512 kilobyte cache. Furthermore,
they have local access to a mirrored disk drive containing
the operating system and all relevant management infor-
mation. Both servers run a Linux 2.4.18 kernel (Red Hat)
and use gcc version 3.2.2 as the C compiler. The access to
the disks is enabled by a QLogic qla2300 host bus adapter.
The FC-AL array consists of four 17 Gigabyte and four 35
Gigabyte fibre channel disks. They are connected with the
server via an 1 Gigabit switch. Each disk is partitioned into
one partition covering the whole disk.

For stressing the underlying I/O subsystem we used the
Bonnie file system benchmark [1]. We changed the original
source code such that we could derive more information
concerning the overhead of our solution. The simple design
and easy handling of Bonnie makes it a suitable tool for
testing I/O performance. It performs, among others, the
following operations on a number of file of desired size: it
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reads and writes the random content of each character of
the file separately, it reads and writes each block of the file,
and it concurrently accesses arbitrary blocks in the file.

The first two tests access a number of data files sequen-
tially. Such a scenario is rather unlikely in practice but it is
able to give an idea of the maximal performance of the I/O
subsystem. More suited to model real world scenarios is
the last test, because we have to access arbitrary blocks in
some files. We set the overall file size to 4 GB (4 times the
size of the main memory) to reduce caching effects. The
size of the extents was fixed to 1 MB.

To derive the overhead of our approach we compare our
approach to the performance of a plain disk (labeled with
the device name, e.g. SDA). More specific, we investigate
the influence of each component of our solution to the over-
all throughput. For that we distinguish the following cases:

1. Clean System (C): Nothing is known in advance.

2. Transfer (T): All extents exist in the database and have
only to be transferred to the driver.

3. Driver (D): The driver has all information locally and
does only perform the mapping of addresses.

The number in parentheses behind the letters C,T,D in the
charts axes is equivalent to the number of physical volumes
belonging to the corresponding storage pool. If not men-
tioned otherwise, the storage pool consists of a single phys-
ical volume.

Throughout the experiments the CPU usage for our ap-
proach was indistinguishable from the CPU usage when ac-
cessing the plain disk. Due to space limitations the corre-
sponding figures are omitted.

3.1. Impact of Extent Requests

Figure 2 shows the throughput for the different settings
when each character is written separately. Note, that we
only get an overhead when the extent is accessed for the
first time. Therefore, the induced costs are credited to many
data accesses and their effect becomes marginal. The dif-
ferences are mostly due to cache effects.

The situation is very different when it comes to block-
wise accesses. Here, the fraction of block accesses which
induce overhead is much higher. Figure 3 shows the perfor-
mance not only for the different settings but also for vary-
ing sizes of corresponding storage pools. Surprisingly, we
lose roughly 40% when using only one disk. The reason for
that lies mostly in the special sequential access pattern. The
achieved high throughput could only be gained because the
layout of the data blocks on disk enables a sweep of the
disk head, minimizing the head movements. Modern file
systems take that into account and adapt their data layout
accordingly. But we destroy the careful layout because we
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Figure 2. Comparison of the sequential out-
put per character.

access the data in extents instead of data blocks. When al-
locating an extent the metadata server returns the first free
position on the disk that is big enough to host the extent.
Therefore, a sequential access of the file system results in
higher movement of the disk head and only the sustained
throughput of a disk could be achieved.
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Figure 3. Comparison of the sequential out-
put per block.

Surprisingly, this effect is compensated by parallel ac-
cesses when feeding the virtual device from more than one
disk. Due to the fact that the operating system issues the
write requests to the main memory and returns immedi-
ately, we achieve parallelism and get roughly the sustained
performance of two disks. We could top the performance
significantly, even if the access pattern does not allow for
much parallelism. This indicates that the overhead induced
by the driver alone is not a limiting factor. Only a clean sys-
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tem with many extent allocations is not able to use many
disks to increase the performance compared to a single
disk. But in a real-world application a data block is ac-
cessed many times and the overhead occurs only once.

3.2. Block Read Performance
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Figure 4. Comparison of performance of
block accesses.

The read access is different from a write because it has to
wait until the data is delivered from the disk. This gives the
operating system enough time to rearrange a larger number
of data accesses and, hence, accesses the disk in a sweep-
ing manner. Figure 4 gives evidence for that. We lose only
about 9% compared to the performance of a plain disk.
As noted above the access pattern allows little parallelism.
Hence, the increasing of the number of disks has only a
small impact on the overall performance.

3.3. Random Seeks

To get the number of random seeks per second Bon-
nie creates 3 threads performing the data requests. It is
our opinion that this test is closest to practice because on
a storage server there are different application generating
rather unpredictable block accesses. Figure 5 compares the
number of seeks per second for all approaches. Again, the
overhead induced by the V:Drive solution is too small to
measure once the extents are allocated.

Note, that the impact of more disks decreases the more
disk participate in the storage pool. This is due to the fact
that the number of scheduled requests stays constant. That
means, that the likelihood of parallel accesses to all disks
decreases with the number of disks. If we would access the
storage pool with more virtual devices the scaling would be
much better.
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Figure 5. Comparison of the performed num-
ber of seeks per second.

4. Conclusion

In this paper we presented a virtualization environment
that is based on the randomized Share-strategy. The shown
results give evidence that such an approach is not only
feasible but also efficient. Especially the performance of
random seeks to files via Bonnie hints that V:Drive scales
nicely with a growing storage network.
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1. Introduction 

Disk access times have not kept pace with the evolution 
of disk capacities, CPU speeds and main memory sizes.  
They have only improved by a factor of 3 to 4 in the last 
25 years whereas other system components have almost 
doubled their performance every other year. As a result, 
disk latency has an increasingly negative impact on the 
overall performance of many computer applications.123

Two main techniques can be used to mitigate this 
problem, namely caching and prefetching.  Caching 
keeps in memory the data that are the most likely to be 
used again while prefetching attempts to bring data in 
memory before they are needed.  Both techniques are 
widely implemented at the data block level.  More recent 
work has focused on caching and prefetching entire files.  

There are two ways to implement file prefetching.  
Predictive prefetching attempts to predict which files are 
likely to be accessed next in order to read them before 
they are needed.  While being conceptually simple, the 
approach has two important shortcomings.  First, the 
prefetching workload will get in the way of the regular 
disk workload.  Second, it is difficult to predict file 
accesses sufficiently ahead of time to ensure that the 
predicted files can be brought into main memory before 
they are needed. 

A more promising alternative is to group together on 
the disk drive files that are often accessed at the same 
time [3].  This technique is known as implicit 
prefetching and suffers none of the shortcomings of 
predictive prefetching because each cluster of files can 
now be brought into main memory in a single I/O opera-
tion.  The sole drawback of this new approach is the 
need to identify stable file access patterns in order to 
build long-lived clusters of related files. 

We present here a new file predictor that identifies 
stable access patterns and can predict between 50 and 70 
percent of next file accesses over a period of one year.  
Our First Stable Successor keeps track of the successor 
of each individual file.  Once it has detected m succes-
sive accesses to file Y, each immediately following an 
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access to file X, it predicts that file Y will always be the 
successor of file X and never alters this prediction. 

The remainder of this paper is organized as follows.  
Section 2 reviews previous work on file access predic-
tion.  Section 3 introduces our First Stable Successor 
predictor and Section 4 discusses its performance.  
Finally, Section 5 states our conclusions 

2. Previous Work 

Palmer et al. [8] used an associative memory to recog-
nize access patterns within a context over time.  Their 
predictive cache, named Fido, learns file access patterns 
within isolated access contexts.  Griffioen and Appleton 
presented in 1994 a file prefetching scheme relying on 
graph-based relationships [4].  Shriver et al. [10] 
proposed an analytical performance model to study the 
effects of prefetching for file system reads.  

Tait and Duchamp [11] investigated a client-side 
cache management technique used for detecting file 
access patterns and for exploiting them to prefetch files 
from servers.  Lei and Duchamp [6] later extended this 
approach and introduced the Last Successor predictor.  
More recent work by Kroeger and Long introduced more 
effective schemes based on context modeling and data 
compression [5]. 

Two much simpler predictors, Stable Successor (or 
Noah) [1] and Recent Popularity [2], have been recently 
proposed.  The Stable Successor predictor is a 
refinement of the Last Successor predictor that attempts 
to filter out noise in the observed file reference stream.  
Stable Successor keeps track of the last observed suc-
cessor of every file, but it does not update its past 
prediction of the successor of file X before having 
observed m successive instances of file Y immediately 
following instances of file X.  Hence, given the 
sequence: 

S: ABABABACABACABADADADA 

Stable Successor with m = 3 will first predict that B is 
the successor of A and will not update its prediction until 
it encounters three consecutive instances of file D 
immediately following instances of file A. 

The Recent Popularity or k-out-of-n predictor 
maintains the n most recently observed successors of 
each file.  When attempting to make a prediction for a 
given file, Recent Popularity searches for the most 
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popular successor from the list.  If the most popular suc-
cessor occurs at least k times then it is submitted as a 
prediction.  When more than one file satisfies the 
criterion, recency is used as the tiebreaker. 

3. The First Stable Successor Predictor 

All the predictors are dynamic in the sense that they 
reflect changes in file access patterns and modify 
accordingly their predictions.  The sole existing static 
predictor is First Successor [1], which always predicts 
the first encountered successor of file X as its successor.  
It is a rather crude predictor and was found to perform 
much worse than all Last Successor, Stable Successor or 
Recent Popularity. 

There are two explanations for this poor performance.  
First, First Successor cannot reflect changes in file 
access patterns.  Second, it bases all its predictions on a 
single observation. 

As shown on Figure 1, the First Stable Successor 
(FSS) predictor remedies this second limitation by 
requiring m successive instances of file Y immediately 
following instances of file X before predicting that file Y 
is the successor of file X.  Otherwise it makes no 
prediction.  When m = 1, the FSS predictor becomes 
identical to the First Successor protocol and predicts that 
that file Y is the successor of file X once it has encoun-
tered a single access to file Y immediately following an 
access to file X. 

A large value of m will result into fewer predictions 
than a smaller value of m but will also increase the 
likelihood that these predictions will be correct.  This 
provides us with a relatively easy way to tune the proto-
col by either increasing m whenever we want to reduce 
the number of false predictions or decreasing it when-
ever we want to increase the total number of predictions. 

4. Performance Evaluation 

When comparing the effectiveness of file predictors, one 
is often confronted with two primary metrics, success-
per-reference and success-per-prediction.  Given the 
dependent nature of these metrics, it is impossible to use 
either of them alone when assessing the performance of 
any given predictor.  For example, a predictor that has a 
99% success-per-prediction rate would be considered 
impractical if it could only be used on 5% of the refer-
ences.  Conversely, predictors that have a high success-
per-reference rate may also give rise to a high number of 
incorrect predictions that may tax the file system to the 
extent that it outweighs any improvements due to 
predictive prefetching.   

We will use a third metric integrating both aspects of 
the predictor performance.  Consider first the two possi-
ble outcomes of an incorrect prediction.  If we assume 
no preemption, the next file access will have to wait 
while the predicted file is loaded into the cache.  The 
 

Assumptions: 
G is file being currently accessed 
F its direct predecessor 
FirstStableSuccessor(F) is last prediction made for 
the successor of F 
LastSuccessor(F) is last observed successor of F 
Count(F) is a counter 
m is minimum number of consecutive identical 
successors to declare a First Stable Sucessor 

Algorithm: 
if FirstStableSuccessor(F) is undefined then 
 if LastSuccessor(F) = G then 
  Counter(F)  Counter(F) + 1 
 else 
  Counter(F)  1 
 end if 
 if Counter(F) = m  then 
  FirstStableSuccessor(F) G 
 end if 
end if 

Figure 1 The First Stable Successor Predictor 

cost of the incorrect prediction is thus one additional 
cache miss.  Allowing preemption would reduce this 
delay and decrease the penalty.  Note that the incorrect 
prediction will have no other adverse effect on the cache 
performance as long as the cache replacement policy 
expels first the files that were never accessed. 

We define the effective success rate per reference of 
a predictor as the ratio: 

ref

incorrcorr

N

NN
 

where  is the number of correct predictions,  

the number of incorrect predictions and  the number 

of references and the  factor represents the impact of 
file fetch preemption on the performance of the predic-
tor.  A zero value for  corresponds to the situation 
where incorrect predictions incur no cost because all 
predicted file fetches can be preempted when found to 
be incorrect without any further delay.  A unit value 
assumes that there is no fetch preemption, and all ongo-
ing fetches must be completed, whether correctly 
predicted or not.  An intermediate  value corresponds 
to situations where preemption is possible, but at some 
cost less than the cost of a file fetch.  Computing the 
effective success rate per reference for  values of, say, 
0.0, 0.5 and 1.0 will permit us to compare predictors for 
a realistic range of file-system implementations. 

corrN incorrN

refN

We evaluated the performance of our FSS predictor by 
simulating its operation on two sets of file traces.  The 
first set consisted of four file traces collected using 
Carnegie Mellon University’s DFSTrace system [7].  
The traces include mozart, a personal workstation, ives, 
a system with the largest number of users, dvorak, a 
system with the largest proportion of write activity, 
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Figure 2.  Effective success rate per reference of the FSS predictor for  = 0 and m varying between 1 and 20. 
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Figure 3.  Effective success rate per reference of the FSS predictor for  = 0.5 and m varying between 1 and 20. 
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Figure 4.  Effective success rate per reference of the FSS predictor for  = 1 and m varying between 1 and 20. 
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and barber, a server with the highest number of system 
calls per second.  They include between four and five 
million file accesses collected over a time span of 
approximately one year.  Our second set of traces was 
collected in 1997 by Roselli [9] at the University of 
California, Berkeley over a period of approximately 
three months.  To eliminate any interleaving issues, 
these traces were processed to extract the workloads of 
an instructional machine (instruct), a research machine 
(research) and a web server (web). 

Figures 2 to 4 represent the effective success rates per 
reference achieved by our First Stable Successor when 
the number m of consecutive successors triggering the 
predictor varies between 1 and 20.  Negative success 
rates correspond to situations where  > 0 and the sum 
of the penalties assessed for incorrect predictions 
exceeds the number of correct predictions. 

As we can see, our First Stable Successor performs 
much better with the four CMU traces than with the 
three Berkeley traces even though the Berkeley traces 
were collected over a much shorter period.  In particular, 
our predictor performs very poorly with the instruct 
trace, which appears to have the least stable reference 
patterns of all seven traces.   

The four CMU traces can be further subdivided into 
two groups. The first group comprises barber and 
mozart, which exhibit rather stable behaviors.  As a 
result, our predictor can successfully predict between 66 
and 69 percent of future references.  Conversely, dvorak 
and ives exhibit less stable behaviors and our predictor 
can successfully predict between 53 and 57 percent of 
future references.  This should not surprise us because 
ives had the largest number of users and dvorak the larg-
est proportion of write activity.  Even when we do not 
penalize incorrect predictions, First Stable Successor 
requires less consecutive successors to reach their opti-
mum performance on barber and mozart than on dvorak 
and ives. 

We can also observe that the number of consecutive 
successors required to achieve optimum performance 
increases on all seven traces when  increases from zero 
to one.  It might be therefore indicated to increase the 
value of the m parameter for workloads that exhibit less 
stable file access patterns in order to reduce the number 
of misses. 

Figures 5 to 7 compare the effective success rates per 
reference achieved by our First Stable Successor with 
m = 8 with those achieved by First Successor, Last Suc-
cessor, Stable Successor with m = 2, and k-out-of-m.  As 
we can see, our First Stable Successor predictor 
performs much better than First Successor but not as 
well as Last Successor, Stable Successor and k-out-of-m.  
This gap is especially evident for the instruct trace as 
these last three predictors perform almost as well as with 
the mozart trace while First Successor and First Stable 
Successor perform very poorly. 

We can draw two major conclusions from our meas-
urements.  First, there are enough stable access patterns 

in the six of the seven traces we analyzed to make 
implicit file prefetching a worthwhile proposition.  This 
is especially true because of the low overhead of the 
approach, which means that wrong predictions would 
only incur a minimal penalty (  << 1).  Second, many, if 
not most, of these stable access patterns are long lived 
and appear to persist over at least a full year.  A file 
system implementing implicit file prefetching would 
probably reevaluate its file groups once a week.  We can 
already predict that these weekly group reevaluations 
will not result in a complete reconfiguration of the whole 
file system. 

5. Conclusions 

Identifying and exploiting stable file access patterns is 
essential to the success of implicit file prefetching as this 
technique builds long-lived clusters of related files that 
can be brought into memory in a single I/O operation. 

We have presented a new file access predictor that 
was specifically tailored to identify such stable file 
access patterns.  Trace-driven simulation results indicate 
that our First Stable Successor can predict up to 70 
percent of next file accesses over a period of one year.   
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Figure 5.  Compared success rates per reference of the five policies for  = 0. 
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Figure 6.  Compared success rates per reference of the five policies for  = 0.5. 
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Figure 7.  Compared success rates per reference of the five policies for  = 1. 
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Abstract 

An on-line backup function for X-NAS, a clustered NAS system designed for entry-level 

NAS, has been developed. The on-line backup function can replicate file objects on X-

NAS to a remote NAS in real-time. It makes use of the virtualized global file system of 

X-NAS, and sends NFS write operations to both X-NAS and the remote backup NAS at 

the same time. The performance of the on-line backup function was evaluated and the 

evaluation results show that the on-line backup function of X-NAS improves the system 

reliability while maintaining 80% of the throughput of the X-NAS without this function. 

  

1.  Introduction 

An entry-level NAS system is convenient in terms of the cost and the ease of 

management for offices with no IT experts. However, it is not scalable. To solve this 

problem, X-NAS, which is a simple, scalable clustered NAS architecture designed for 

entry-level NAS, has been proposed [6]. Like conventional NAS systems, it can be used 

for various clients, such as those using UNIX and Windows
1
. X-NAS aims at the 

following four goals.  

 

 

 

 

                                                          

Cost reduction by using entry-level NAS as an element  

Ease of use by providing a single-file-system view for various kinds of clients  

Ease of management by providing a centralized management function 

Ease of scaling-up by providing several system-reconfiguration functions  

  

To achieve these goals, X-NAS virtualizes multiple entry-level NAS systems as a unified 

system without changing clients' environments. In addition, X-NAS maintains the 

manageability and the performance of the entry-level NAS. It also can easily be 

reconfigured without stopping file services or changing setting information. However, 

when one of the X-NAS elements suffers a fault, file objects on the faulty NAS system 

may be lost if there are no backups. To improve the X-NAS reliability, a file-replication 

function must therefore be developed.  

 

The goal of the present work is to introduce an on-line backup function of X-NAS that 

replicates original file objects on X-NAS to a remote NAS for each file access request in 

real-time without changing the clients' environments. The performance of the on-line 

backup function was evaluated and the evaluation results indicate that X-NAS with the 

on-line backup function improves the system reliability while maintaining 80% of the 

throughput of standard X-NAS.  

 
1
 Windows and DFS are trademarks of Microsoft Corporation. Double Take is a trademark of Network 

Specialists, Inc. All other products are trademarks of their respective corporations. 
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2.  On-line backup function for X-NAS 

To improve the reliability of X-NAS, an on-line backup function for X-NAS has been 

developed. (Since the details of the X-NAS structure are discussed in another paper [6], 

they are not described here.) The on-line backup function consists of many sub-functions. 

Among these sub-functions, we focus on on-line replication, the heart of the on-line 

backup function, in this paper. The on-line replication replicates files of X-NAS to a 

remote NAS, which is called a backup NAS, in real-time for each file access request.  

 

2.1. Requirements 

The on-line backup function of X-NAS must meet the following requirements: 

 

 

 

Generate replicas of file objects in real-time in order to eliminate the time lag between 

the original data and the replicas.  

Use a standard file-access protocol such as NFS to communicate between X-NAS and 

the backup NAS in order to apply as many kinds of NAS as clients need.  

Do not change clients' environments in order to curb their management cost.  

 

2.2. On-line replication 

There are several methods for replicating file objects to remote systems via an IP network.  

One method is to use a block I/O [5]. Since using a block I/O is a fine-grain process, all 

file objects are completely consistent with copied objects. However, the system structure 

is limited because the logical disk blocks of the objects must be allocated to the same 

address between the original data and its replica. Another method is to change the client's 

system. DFS [1] is a simple method for replicating file objects to many NASs. It 

replicates file objects in constant intervals but not in real-time.  

 

Xnfsd and the management partition in X-NAS enable the centralized management of 

many NAS elements and provide a unified file system view for clients (Fig. 1). Xnfsd is a 

wrapper daemon and receives an NFS operation in place of the NFS server and sends the 

operation to others. On-line replication of X-NAS makes use of Xnfsd in order to copy 

file objects to the backup NAS. By extending this function, Xnfsd sends the NFS 

operation not only to the NFS servers on the X-NAS but also to the NFS servers on the 

backup NAS. All file objects can thus be replicated in real-time for each NFS operation. 

 

2.2.1. Operations 

NFS operations handled in X-NAS can be divided into four categories. Category 1 is 

reading files; category 2 is writing files; category 3 is reading directories; and category 4 

is writing directories. Xnfsd sends NFS operations belonging to categories 2 and 4 to both 

X-NAS and the backup NAS at the same time. On the other hand, NFS operations 

belonging to categories 1 and 3 are not sent to the backup NAS.  

 

When a UNIX client sends a WRITE operation for file f to X-NAS, Xnfsd on P-NAS 

(parent NAS) receives the operation in place of the NFS daemon. Figure 1 shows the 

flow of this operation, and Figure 2 shows the timing chart with or without the on-line 

backup function. Firstly, Xnfsd specifies a data partition that stores the file entity by 

using the inode number of the dummy file f on the management partition (#1). Secondly, 

Xnfsd invokes a sub thread and then sends the WRITE operation to the backup NAS by 
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using the thread (#2). Thirdly, Xnfsd sends the WRITE operation to the NFS daemon on 

the specified C-NAS (child NAS), and then the C-NAS processes the operation (#3). 

Finally, Xnfsd waits for the responses of the operations from the NFS server on the C-

NAS and from the backup NAS (#4), and then it makes one response from all the 

responses and sends it back to the client. We call this procedure a synchronized backup.  
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Figure 1: Flow of WRITE operation with online backup function. 
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2.2.2. Key features 

An on-line backup function must guarantee the consistency of data between X-NAS and 

the backup NAS. To achieve this, Xnfsd waits for all responses from both one of the NFS 

servers on the X-NAS and the backup NAS for each NFS operation. However, waiting 

for the responses degrades total performance. To solve this problem, the performance of 

the on-line replication function must be improved through three key features as follows. 

 

(1) Multi-threaded wrapper daemon  

 Xnfsd waits for all responses from both NAS systems. This incurs an overhead because 

of frequent accesses to the network and the disk drives. To reduce this cost, the main 
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thread of Xnfsd invokes a sub thread to send the file I/Os to the backup NAS. This 

feature enables X-NAS to process the disk accesses of both X-NAS and the backup NAS 

in parallel.  

 

(2) File-handle cache 

The cost of specifying the full path name and the file handle on the backup NAS is high 

because of frequent accesses to the network and the disk drives.  To reduce this cost, X-

NAS makes use of a file-handle cache, which records the correspondence between the 

file handle of the dummy file, i.e., the global file handle, and the file handle of the backup 

NAS.  

 

(3) Partial asynchronized backup 

Although the synchronized backup is a simple method, the execution cost is high because 

this method waits for all the responses from the NFS servers on the X-NAS and the 

backup NAS. A method that does not wait for the response from the backup NAS 

achieves the same performance as X-NAS without the on-line backup function. However, 

when X-NAS or the backup NAS becomes faulty, it is difficult to guarantee the 

consistency of data between X-NAS and the backup NAS. Using a log is one solution to 

guarantee the consistency. However, since the log size is limited, it is not a perfect 

solution for entry-level NAS, which usually has a small-sized memory. Furthermore, 

according to the X-NAS concept, the architecture must be simplified as much as possible. 

Xnfsd thus supports a partial asynchronized backup method in addition to the 

synchronized backup. Figure 2(c) shows the timing chart of the WRITE operation with 

partial asynchronized backup. In the method, after processing disk accesses to the data 

partition on the X-NAS element, Xnfsd sends back a response to a client without waiting 

for the response from the backup NAS. As a result, the client can send the next operation. 

The main thread of Xnfsd can perform the disk accesses to the management partition for 

the next operation during the waiting time for the response from the backup NAS. 

 

3.  Performance evaluation 

To evaluate the on-line backup function of X-NAS, an X-NAS prototype based on the 

NFSv3 implementation was developed. We ran NetBench [3] and SPECsfs97 [4] on the 

X-NAS prototype with or without on-line backup function. In this evaluation, by taking 

account of permissible range for the entry-level NAS's users, we set the performance 

objective for X-NAS with the on-line backup function at 80% of the performance of X-

NAS without the function. Throughput and average response time are used as the 

performance metrics. In this evaluation, we implemented the partial asynchronized 

backup function in the WRITE operation. This is because the ratio of the WRITE 

operations to all operations is higher than other operations in the workload mix of the 

benchmarks. Furthermore, since the file sizes used by the benchmark programs are from 

100 to 300 KB, many WRITE operations are issued continuously and then each process 

in a WRITE operation could be overlapped. 

 

3.1. Experimental environment 

In the experimental environment, the maximum number of X-NAS elements is fixed to 

four. Each X-NAS element and the backup NAS configured with one 1-GHz Pentium III 
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processor, 1 GB of RAM and a 35-GB Ultra 160 SCSI disk drive running Red Hat Linux 

7.2. For the NetBench test, one to eight clients running Windows 2000 Professional were 

used. The clients, P-NAS, C-NASs, and the backup NAS were connected by 100-Megabit 

Ethernet because most offices still use this type of LAN.  

 

3.2. Results 

Figures 3 and 4 show the results of our performance evaluation in terms of throughput 

and average response time. The throughputs of X-NAS with the synchronized backup 

function are about 80% of those without the function. Under an experimental 

environment with NetBench, the average response time for X-NAS with the function is 

about 1.2 times higher than that for X-NAS without the function. On the other hand, 

under an experimental environment with SPECsfs, the average response time for X-NAS 

with the function is about 1.4 times higher than the time for X-NAS without it. Although 

the partial asynchronized backup can improve both throughput and average response time 

by several percentage, the performance objective for the response time in the case of 

SPECsfs cannot be achieved yet.  
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3.3. Discussion 

To specify the reason for the longer response time in the case of SPECsfs, the average 
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response time of each NFS operation in the case of the synchronized backup was 

analyzed. The average response times for some write requests such as WRITE, 

SETATTR and CREATE are longer than those for X-NAS without that function. In 

particular, the average response time for WRITE operations is 2.5 times higher than that 

for the other operations. Profiling results of the WRITE operations shows that waiting 

time for the sub-thread completion is about 24% of the total processing time and access to 

the data partition via an IP network is about 48% of that time. By applying the partial 

asynchronized backup to X-NAS, this waiting time can be reduced to almost zero. Figure 

4(c) shows the effects of the partial asynchronized backup in the case of WRITE 

operations. The average response time for WRITE operations with the partial 

asynchronized backup can be reduced to from 2.5 times to 1.8 times the time for X-NAS 

without the function. As a result, the total average response time for SPECsfs with the 

function can be reduced to 1.3 times that without it. However since the ratio of data 

transmission time to the total processing time is still higher in the case of the 100-

Megabit Ethernet, using a Gigabit network is effective because it can reduce the data 

transmission time for 100-Megabit Ethernet to at least one-fifth. Furthermore, by 

optimizing other operations such as CREATE and COMMIT, the performance objective 

of 1.2 times can be achieved.  

  

4.  Related work 

There are several methods for replicating file objects between several NAS systems via 

the network. DFS [1] is a simple and easy file-replication function on Windows systems. 

DRBD [5] is a kernel module for building a two-node HA cluster under Linux. Double 

Take [2] is a third-vendor software to replicate file objects on the master NAS to the 

slave NAS.  

  

5.  Conclusions 

An on-line backup function for X-NAS, a clustered NAS system, has been developed.  

On-line replication, the core of the on-line backup function, replicates file objects on X-

NAS to a remote backup NAS in real-time for each NFS operation. A multi-threaded 

wrapper daemon with a low overhead, the developed file-handle cache and the partial 

asynchronized backup method can reduce the overhead for accessing the backup NAS. 

An X-NAS prototype with the on-line backup function, based on NFSv3 running the 

NetBench and SPECsfs97 programs attains 80% of the performance of X-NAS without 

the function. This function improves the dependability of entry-level NAS while 

maintaining its manageability.  
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1. Abstract
The software package presented within this paper has proven to be capable of managing
the storage and exchange of several hundreds of terabytes of data, transparently
distributed among dozens of disk storage nodes. One of the key design features of the
dCache is that although the location and multiplicity of the data is autonomously
determined by the system, based on configuration, cpu load and disk space, the name
space is uniquely represented within a single file system tree. The system has shown to
significantly improve the efficiency of connected tape storage systems, through caching,
’gather & flush’ and scheduled staging techniques. Furthermore, it optimizes the
throughput to and from data clients as well as smoothing the load of the connected disk
storage nodes by dynamically replicating datasets on the detection of load hot spots. The
system is tolerant against failures of its data servers which enables administrators to go
for commodity disk storage components. Access to the data is provided by various ftp
dialects, including gridftp, as well as by a native protocol, offering regular file system
operations like open/read/write/seek/stat/close. Furthermore the software is coming with
an implementation of the Storage Resource Manager protocol, SRM, which is evolving to
an open standard for grid middleware to communicate with site specific storage fabrics.

2. Contributors
The software is being developed by the Deutsches Elektronen Synchrotron (DESY) in
Hamburg, Germany[1] and the Fermi National Laboratory, Batavia Chicago,IL, USA
[2].

3. Technical Specification

3.1 File name space and dataset location
dCache strictly separates the filename space of its data repository from the actual
physical location of the datasets. The filename space is internally managed by a database
and interfaced to the user resp. to the application process by the nfs2 [9] protocol and
through the various ftp filename operations. The location of a particular file may be on
one or more dCache data servers as well as within the repository of an external Tertiary
Storage Manager. dCache transparently handles all necessary data transfers between
nodes and optionally between the external Storage Manager and the cache itself. Inter
dCache transfers may be caused by configuration or load balancing constrains. As long as
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a file is transient, all dCache client operations to the dataset are suspended and resumed
as soon as the file is fully available.

3.2Maintenance and fault tolerance
As a result of the name space —data separation, dCache data server nodes subsequently
denoted as pools, can be added at any time without interfering with system operation.
Having a Tertiary Storage System attached, or having the system configured to hold
multiple copies of each dataset, data nodes can even be shut down at any time. Under
those conditions, the cache system is extremely tolerant against failures of its data server
nodes.

3.3Data access methods
In order to access dataset contents, dCache provides a native protocol (dCap), supporting
regular file access functionality. The software package includes a c-language client
implementation of this protocol offering the posix open/read/write/seek/stat/close calls.
This library may be linked against the client application or may be preloaded to
overwrite the file system I/O operations. The library supports pluggable security
mechanisms where the GssApi (Kerberos) and ssl security protocols are already
implemented. Additionally, it performs all necessary actions to survive a network or
pool node failure. It is available for Solaris, Linux, Irix64 and windows. Furthermore, it
allows to open files using an http like syntax without having the dCache nfs file system
mounted. In addition to this native access, various FTP dialects are supported, e.g.
GssFtp (kerberos) [8] and GsiFtp (GridFtp) [7]. An interface definition is provided,
allowing other protocols to be implemented as well.

3.4Tertiary Storage Manager connection
Although dCache may be operated stand alone, it can also be connected to one or more
Tertiary Storage Systems. In order to interact with such a system, a dCache external
procedure must be provided to store data into and retrieve data from the corresponding
store. A single dCache instance may talk to as many storage systems as required. The
cache provides standard methods to optimize access to those systems.
Whenever a dataset is requested and cannot be found on one of the dCache pools, the
cache sends a request to the connected Tape Storage Systems and retrieves the file from
there. If done so, the file is made available to the requesting client. To select a pool for
staging a file, the cache considers configuration information as well as pool load,
available space and a Least Recently Used algorithms to free space for the incoming data.
Data, written into the cache by clients, is collected and, depending on configuration,
flushed into the connected tape system based on a timer or on the maximum number of
bytes stored, or both. The incoming data is sorted, so that only data is flushed which will
go to the same tape or tape set.
Mechanisms are provided that allow giving hints to the cache system about which file
will be needed in the near future. The cache will do its best to stage the particular file
before it’s requested for transfer.
Space management is internally handled by the dCache itself. Files which have their
origin on a connected tape storage system will be removed from cache, based on a Least
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Recently Used algorithm, if space is running short. Space is created only when needed.
No high/low watermarks are used.

3.5 Pool Attraction Model
Though dCache distributes datasets autonomously among its data nodes, preferences may
be configured. As input, those rules can take the data flow direction, the subdirectory
location within the dCache file system, storage information of the connected Storage
Systems as well as the IP number of the requesting client. The cache defines data flow
direction as getting the file from a client, delivering a file to a client and fetching a file
from the Tertiary Storage System. The simplest setup would direct incoming data to data
pools with highly reliable disk systems, collect it and flush it to the Tape Storage System
when needed. Those pools could e.g. not be allowed to retrieve data from the Tertiary
Storage System as well as deliver data to the clients. The commodity pools on the other
hand would only handle data fetched from the Storage System and delivered to the clients
because they would never hold the original copy and therefore a disk /node failure
wouldn’tdo any harm to the cache. Extended setups may include the network topology to
select an appropriate pool node. Those rules result in a matrix of pools from which the
load balancing module, described below, may choose the most appropriate candidate.
Each row of the matrix contains pools with similar attraction. Attraction decreases from
top to bottom. Should none of the pools in the top row be available, the next row is
chosen, a.s.o.. Optionally, stepping from top to bottom can be done as long as the
candidate of row ’n’is still above a certain load. The final decision, which pool to select
of this set, is based on free space, age of file and node load considerations.

3.6 Load Balancing and pool to pool transfers
The load balancing module is, as described above, the second step in the pool selection
process. This module keeps itself updated on the number of active data transfers and the
age of the least recently used file for each pool. Based on this set of information, the most
appropriate pool is chosen. This mechanism is efficient even if requests are arriving in
bunches. In other words, as a new request comes in, the scheduler already knows about
the overall state change of the whole system triggered by the previous request though this
state change might not even have fully evolved. System administrators may decide to
make pools with unused files more attractive than pools with only a small number of
movers, or some combination. Starting at a certain load, pools can be configured to
transfer datasets to other, less loaded pools, to smooth the overall load pattern. At a
certain point, pools may even fetch a file from the Tertiary Storage System again, if all
pools, holding the requested dataset are too busy. Regulations are in place to suppress
chaotic pool to pool transfer orgies in case the global load is steadily increasing.
Furthermore, the maximum numbers of replica of the same file can be defined to avoid
having the same set of files on each node.

3.7 File Replica Manager
A first version of the so called Replica Manager is currently under evaluation. This
module enforces that at least N copies of each file, distributed over different pool nodes,
must exist within the system, but never more than M copies. This approach allows to shut
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down servers without affecting system availability or to overcome node or disk failures.
The administration interface allows to announce a scheduled node shut down to the
Replica Manager so that it can adjust the N — M interval.

4. Data Grid functionality
In the context of the LHC Computing Grid Project [4], a Storage Element describes a
module providing mass data to local Computing Elements. To let a local Storage System
look like a Storage Element, two conditions must be met. Storage Elements must be able
to communicate to each other in order to exchange mass data between sites running
different Storage System and Storage Elements have to provide local data through
standard methods to allow GRID jobs to access data files in a site independent manner.
The first requirement is covered by a protocol called the Storage Resource Manager,
SRM [3], defining a set of commands to be implemented by the local Storage System to
enable remote access. It mainly covers queries about the availability of datasets as well as
commands to prepare data for remote transfer and to negotiate appropriate transfer
mechanisms. dCache is providing an SRM interface and has proven to be able to talk to
other implementations of the SRM. A dCache system at FERMI is successfully
exchanging data with the CASTOR Storage Manager at CERN using the SRM protocol
for high level communication and GridFtp for the actual data transfer. The second
requirement, to make local files available to Grid Applications, is approached by the G-
File initiative, a quasi standard as well. It offers well defined, posix like function calls
that allow site independent access to files held by the local Storage Element. Optionally
G-File can talk to other grid modules to register imported files or files being exportable.
G-File developers at CERN have successfully linked the g-file library against the dCache
dCap library.

5. Dissemination
In the meantime, dCache is in production at various locations in Europe and the US. The
largest installation is, to our knowledge, the CDF system at FERMI [2]. 150 Tbytes are
stored on commodity disk systems and in the order of 25 Tbytes have been delivered to
about 1000 clients daily for more than a year. FERMI dCache installations are typically
connected to ENSTORE [11], the FERMI tape storage system. CDF is operating more
than 10 tape-less dCache installations outside of FERMI, evaluating the dCache Replica
Manager. The US devision of the LHC CMS [13] experiment is using the dCache as Grid
Storage Element and large file store in the US and Europe. At DESY, dCache is
connected to the Open Storage Manager (OSM) and serving data out of 70 Tbytes of disk
space. The German LHC Grid Tier 1 center in Karlruhe (GridKa,[12]) is in the process of
building a dCache installation as Grid Storage Element, connected to their Tivoli Storage
Manager [16] installation.
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Abstract 
This paper presents the data management issues associated with a large center like the 
NCCS and how these issues are addressed. More specifically, the focus of this paper is on 
the recent transition from a legacy UniTree (Legato) system to a SAM-QFS (Sun) 
system. Therefore, this paper will describe the motivations, from both a hardware and 
software perspective, for migrating from one system to another. Coupled with the 
migration from UniTree into SAM-QFS, the complete mass storage environment was 
upgraded to provide high availability, redundancy, and enhanced performance. This 
paper will describe the resulting solution and lessons learned throughout the migration 
process. 

1. Introduction 

The Science Computing Branch of the Earth and Space Data Computing Division at the 
Goddard Space Flight Center (GSFC) manages and operates the NASA Center for 
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Computational Sciences (NCCS).[1] The NCCS is a shared center providing 
supercomputing services and petabyte-capacity data storage to a variety of user groups. 
Its mission is to enable Earth and space sciences research through computational 
modeling by providing its user community access to state of the art facilities in High 
Performance Computing (HPC), mass storage technologies, high-speed networking, and 
HPC computational science expertise. 
 
The largest workloads currently being performed at the NCCS consist of Earth system 
and climate modeling, prediction, and data assimilation. Input data for these applications 
come from many sources, including ground and satellite stations. Both computer and 
sensor technology have grown dramatically within the last decade causing a boom in the 
amount of data generated by these types of sources.[2] 
 
The major groups that comprise the NCCS user community include the following: 
 

 Global Modeling and Assimilation Office (GMAO): consists of both the Seasonal-
to-Interannual Prediction Project (NSIPP) and the Data Assimilation Office 
(DAO), produces ensembles of simulations of near-term climate and creates 
research-quality assimilated global data sets from multiple satellites for climate 
analysis and observation planning. 

 Goddard Institute for Space Studies (GISS): produces climate studies focusing on 
timescales ranging from a decade to a century. 

 ESTO/Computational Technologies Project: develops the Earth System Modeling 
Framework (ESMF). 

 Atmospheric Chemistry: research teams investigating the evolution of the 
composition of the Earth's atmosphere and its impact on weather and climate. 

 Research and Analysis Group: a large collection of smaller research efforts. 

2. Data Management at the NCCS 

With over 3 Teraflops of computational capacity, the research performed throughout the 
heterogeneous environment of the NCCS uses large amounts of existing data for new 
computational studies while generating large amounts of new data from the output of 
these studies. In general, the total data stored at the NCCS is growing at approximately 
125 TB of data per year, which includes both primary and secondary copies of user data. 
As an example of this net growth of data, during FY03, a total of 207 TB of new data was 
stored while approximately 143 TB of data was deleted. This resulted in a net growth of 
64 TB of single copy data or 128 TB when duplicated. Complementary, the number of 
files managed by the Mass Data Storage and Delivery System (MDSDS) has grown from 
3.5 million in 1999 to more than 10 million in 2003. 
 
Figure 1 shows the linear data growth as measured at the end of the fiscal year (month of 
September) for the past five years of only the legacy UniTree data. This trend is expected 
to increase dramatically in the next few years as the diverse mass storage facilities at the 
NCCS are consolidated and with increased utilization of the computational resources. 
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Figure 1: Growth of Mass Data Storage and Delivery System (MDSDS) data and files at the NCCS.

Throughout any given day, data is pulled from and stored to the MDSDS as jobs are run 
on the computational platforms. The NCCS measures the inbound and outbound data of 
the mass storage system and has seen traffic, files being transferred into and out of the 
mass storage system, of up to a total of 2.9 TB for a single day. Therefore, the resulting 
storage system must not only keep pace with the increase in overall storage, but also 
maintain the capability to serve larger amounts of data on demand. 

3. Hierarchical Storage Management (HSM) 

An HSM consists of different layers of storage capability for users to store and retrieve 
their data. Typically, a high speed disk cache is used as the first layer of storage and 
software is run to migrate files from high speed disk cache (1st layer storage) to slower 
tape media (2nd layer storage). 
 
There are two existing HSM systems at the NCCS. The NCCS provides the MDSDS, 
previously running UniTree, for high-performance long-term storage for most NCCS user 
data.[3,4] A second system, which uses the SGI Data Migration Facility (DMF), supports 
the GMAO DAO users. This paper only discusses the replacement of the MDSDS’s 
OTG’s DiskXtender Storage Manager (DXSM) software, formerly known as UniTree 
Central File Manager (UCFM). 
 
The UniTree management software runs on an aging Sun E10K with eight TB of Data 
Direct Network high performance disk storage. The MDSDS manages eight StorageTek 
(STK) Powderhorn 9310 robotic silos (five primary silos in the NCCS’s primary building 
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and three secondary risk-mitigation silos in a building a mile away). For all user data, the 
MDSDS is configured to make a primary copy of files on tapes in the NCCS’s primary 
building and a secondary copy on the tapes in the risk mitigation location. 
 
Users access the MDSDS through the File Transfer Protocol (FTP) from any of the 
computational platforms or even their desktops. A home directory for each user is defined 
within a single MDSDS file system. Files that are put into UniTree are first copied into 
the MDSDS file system and then archived to tape and later released from disk cache 
according to NCCS policies. File retrieves are transparent whether the file resides on disk 
or must first be staged from tape; however, any retrieves of files from tapes incur a 
latency to load the tape into a tape drive, position the tape to the beginning of the file, and 
then copy the file to the disk. 
 
While UniTree was a very reliable mass storage software system, by the middle of 2001, 
it became apparent that the recently modified capacity license cost model for UniTree 
was not compatible with the NCCS budget in light of the NCCS users’ projected growth 
over the ensuing years. The NCCS began exploring alternatives and undertook a detailed 
feature comparison of four major storage management systems used for several years in 
high performance computing environments. The candidates were SGI’s Data Migration 
Facility (DMF), IBM’s High Performance Storage System (HPSS), Sun’s SAM-QFS 
(also known as Sun StorEdge Performance and Utilization Suite), and UniTree. The 
various solutions were evaluated based on the following attributes: 
 

 Performance: meet the needs for user requests for storage and retrieval of data. 

 Integrity/High Availability: stable and safe environment more readily available 
than the existing HSM. 

 Flexible/Modular/Scalable: allows for the maximum possible options for 
hardware and software and can scale with the users’ requirements. 

 Balance: avoid bottlenecks throughout the flow of data to the storage media. 

 Manageable: tools provide a rich environment for administration and reporting. 

4. Sun/SAM-QFS Solution 

An internal panel evaluated the vendor responses and awarded the highest rating to the 
Sun SAM-QFS proposal. Notably, the Sun proposal scored high marks for its ability to be 
configured for high availability by sharing file systems in a clustered environment, its 
ability to “stream” the writing of tiny files to tape by combining them into “containers,” 
and by having the largest customer base. Complementary to the Sun proposal, the NCCS 
also purchased more disk space and tape drive upgrades. The resulting system continued 
to leverage the existing investment in the STK hardware while providing a viable system 
to meet the future needs of the NCCS. 
 
A Sun Fire 15K system was purchased and configured into two distinct domains. These 
two domains, along with multiple interfaces to each, provide a highly available system 
for the user community. Fully redundant, SAM-QFS provides the necessary storage 
management software to provide multiple file systems with storage, archive management, 
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and retrieval capabilities for a variety of storage media. The major components that make 
up the Sun SAM-QFS software are as follows:[6] 
 

 Archiver: automatically copies online disk cache files to archive media. The 
archive media can consist of either online disks or removable media cartridges. 

 Releaser: automatically maintains the file system’s online disk cache at site-
specified percentage usage thresholds by freeing disk blocks occupied by eligible 
archived files. 

 Stager: restores file data to the disk cache. When a user or a process requests file 
data that has been released from disk cache, the stager automatically copies the 
file data back to the online disk cache. 

 Recycler: clears archive volumes of expired archive copies and makes volumes 
available for reuse. 

 
One of the key requirements from the outset of the transition to a new HSM was for the 
legacy UniTree data to remain transparently accessible to the user community through the 
new system. To facilitate the access of UniTree data on SAM-QFS, the entire file name 
space and directory structure of the UniTree system was recreated as directories and 
inodes in SAM-QFS. These inodes were basically placeholders, or links, to the original 
files in UniTree and contained an NCCS-defined volume serial number (VSN) and a 
“stranger” tape media type. Using the SAM migration toolkit, a set of libraries was 
created by Instrumental, Inc. to satisfy a stage request in SAM-QFS for a legacy UniTree 
file, which was identified to SAM by the “stranger” media type and the NCCS-defined 
VSN. Therefore, if a user requests a file that resides in UniTree, these libraries 
transparently retrieve the specified file from the UniTree system over a private network. 
Once the file has been retrieved from UniTree, it now exists within the SAM-QFS file 
system with two archive copies written to SAM tape and no longer needs to be retrieved 
from the legacy HSM. 
 
Complementary to user driven access to the legacy data in UniTree, the NCCS has 
written Perl scripts to actively migrate the data from UniTree into SAM-QFS. These Perl 
scripts migrate files on a tape-by-tape basis and run “behind the scenes” to minimize the 
impact to the production environment. A single migration stream will secure files on a 
UniTree VSN from a well-defined list of UniTree tapes. This stream will get the current 
status of each file on that tape, i.e., whether or not the user has already migrated the file 
by retrieving it from tape or has even deleted the file. Next, the migration stream will 
begin to transfer the files over the private network using FTP. When the legacy files are 
retrieved to SAM-QFS disk cache, SAM writes two tape archive copies. After the 
migration stream has been completed, a separate analysis Perl script is run on each 
UniTree tape to verify that the files are in SAM-QFS. For quality control purposes, a 
checksum is run on every 100th file. The current rate of migration is approximately 2 TB 
of data per day. 

5. Conclusions 

The integration effort of installing a new system to an existing High Performance 
Computing environment is difficult and requires much planning and effort. The 
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installation of the new Sun SAM-QFS system was no exception and many valuable 
lessons were learned. 
 

 Migration of Legacy Data: The goal of migrating 100’s of terabytes of data while 
still providing users with the ability to store and retrieve new files and 
transparently access legacy data is nontrivial and takes a significant number of 
resources. The amount of time and resources, i.e., tapes, tape drives, and network 
bandwidth, needs to be accurately estimated from the beginning and built into the 
integration plan such that users are not overly disrupted during the transition 
period as data is being migrated. 

 Test System: It is important to have a test environment in which configuration 
modifications, such as operating system or storage software upgrades, may be 
tested without affecting the production environment. 

 User Account Management: With two highly available domains on the new 
system, NCCS specific scripts were developed to synchronize user accounts 
between the two domains. 

 Pilot User Phase: Before turning the system over to production computing, the 
internal NCCS staff and a set of pilot users were permitted access to the system. 
This phase allowed for a thorough testing of the environment before the full user 
community was allowed access. 

 Staff and User Training: While the SAM-QFS system was designed to be as 
consistent as possible with UniTree, several training sessions were held with the 
staff and with the users to attempt to answer common questions. This allowed the 
user community to immediately begin using the new system and the staff to better 
support users from the beginning. 

 Software Upgrades: Maintaining concurrency with the vendor’s most recent 
release levels of operating systems and software is extremely important. Most 
vendors do not have the means to retroactively fix bugs for earlier release levels. 

 Security: Define the necessary security requirements at the beginning of the 
process, and let those requirements drive the solution. It is more costly and 
disruptive to secure a system after it has been installed and patterns of use have 
developed by the user community. 

 
The NCCS successfully transitioned the Sun SAM-QFS system into the production 
environment in September of 2003. The active migration of the more than 300 TB of data 
is slated to be completed in May of 2004. The new system has proven to be very reliable 
and capable of handling heavier loads than its predecessor. To date, the NCCS has seen 
tape activity, both user demand and migrations, exceed 9.8 TB for a single day. 
 
As the NCCS continues to add computational capacity and as the user community 
continues to push the limits of modeling and assimilation to new heights, the HSM must 
evolve and adapt to the continued increase of requirements. The NCCS will incorporate 
the disk cache from UniTree into the production SAM-QFS system once the migration of 
the legacy data is complete. Also, the NCCS is analyzing the use of serial ATA, 
commodity based disk storage, as a second tier storage to sit between the high speed disk 
and slower tape. Finally, the NCCS is currently developing a data management system, 
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based on the Storage Resource Broker (SRB),[7] to provide user’s with a single interface 
to storage and more control over their own data administration. 
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Abstract

With the deployment of larger and larger distributed storage systems, data reli-
ability becomes more and more of a concern. In particular, redundancy techniques
that may have been appropriate in small-scale storage systems and disk arrays may
not be sufficient when applied to larger scale systems. We propose a new mechanism
called delayed parity generation with active data replication (DPGADR) to maintain
high reliability in a large scale distributed storage system without sacrificing fault-free
performance.

1 Introduction

Data creation and consumption has increased significantly in recent years and studies have
suggested that the amount of information stored digitally will continue to double every year
for the foreseeable future. This increasing need for information storage leads to a corre-
sponding need for high-performance and reliable storage systems. Single storage nodes
can not provide the required storage capacity or scalability. Thus, in an effort to satisfy
this need, there has been significant work in the area of distributed storage systems where
storage nodes are aggregated together into a larger cohesive storage system. These include
distributing data amongst shared disks [1, 6, 12], dedicated storage nodes [8], clustered
servers [4], or the clients themselves [2, 7]. It is not unreasonable to expect systems with
petabytes of data distributed across thousands of nodes in these distributed storage systems.

However, as we increase the number of nodes, the reliability of the entire system de-
creases correspondingly unless steps are taken to introduce some form of redundancy into
the system. In this paper, we discuss redundancy mechanisms to provide high reliability
without sacrificing fault free performance. For the purposes of this paper, we refer to in-
dividual storage devices in the distributed storage system as nodes - whether they be disks
in a shared disk SAN, servers in a clustered server, or OBSDs in a network attached disk
system. The techniques and strategies apply with slight variations to all implementations.

Data redundancy in most disk array subsystems is typically provided by using RAID.
These same techniques used at the disk level can also be used at the node level. Mirroring,
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or RAID1, entails replication of the data on multiple nodes. Parity striping, or RAID5,
involves spreading data along with parity across multiple nodes. Choosing which RAID
level to use is typically determined by cost and application requirements. At the disk array
level, the redundancy choice is usually RAID5 as it provides excellent availability, little
storage overhead, and adequate performance.

However, with a large scale distributed system, the choice is not so clear. RAID5 no
longer provides sufficient reliability since a thousand node system could exhibit MTTFs
of a few years. A mirrored distributed storage system, however, can have an MTTF of
several decades. In addition, RAID5 suffers from the well-known write penalty whereby
parity updates require two extra reads to generate the parity. Techniques to overcome this
problem in a disk subsystem such as the use of non-volatile caches can not be used in a
distributed system. Moreover, the cost of the write penalty is more significant because of
the high latency costs inherent in network communications.

Because of the limitations of parity striping, in many distributed storage systems, repli-
cation or mirroring is the preferred strategy for redundancy [3, 15]. In addition, replication
allows widely distributed clients and nodes to take advantage of locality and retrieve data
from the closest storage node. However, the cost of mirroring is the 100% storage overhead.

In this paper, we present methods to achieve the low storage overhead of parity striping
but retaining the performance and reliability characteristics of mirroring. In particular, we
discuss the use of delayed parity generation to improve parity striping performance.

2 Delayed Parity Generation with Active Data Replication

The concept of delayed parity generation with active data replication (DPGADR) is based
on reducing the number of accesses required to generate parity in a RAID5 system. In a
standard RAID5 disk array, the array controller must read old values from both the data
and parity disks and then write the new data back to the data disk and the XOR’ed parity
result back to the parity disk. This results in a total of 4 disk accesses (potentially 2 if the
parity and data reads had been cached). In a DPGADR system, we delay the generation of
the parity, and thus do not require the reading of old data and parity or the writing the parity
result. However, without parity generation, the system is potentially compromised in the
event of failure. To address this, we replicate the new data to a replication node that is not
part of the RAIDed redundancy group. We have reduced the number of accesses to just 2
writes - both of which can be proceed in parallel. Figure 1 shows the data distribution in a
DPGADR system. In order to distribute the load, the replication node can be rotated across
the redundancy group.

Each replication node keeps a map relating the actual block location to the active data
locations kept on the node. Thus, the client is not responsible for identifying the block
location for the replicated data on the replication node. The client can use a simple hash
algorithm to map from block ID to replication node, and it is then the replication node’s
responsibility to allocate storage space locally.

On the surface, this DPGADR scheme appears to be simply mirroring of data. However,
we do not maintain the mirrored data on the replication node in perpetuity. In order to avoid
replicating all data writes, the replication node will periodically generate the parity for any
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Figure 1: DPGADR data distribution.

blocks that it contains and then flush these blocks from its data store. Because of this
periodic data flushing, the replication node is in effect a cache of actively used data blocks.

Parity generation from the replication node is not a trivial problem as the replication
node may not have the required data to generate the parity. In such a case, the node must
retrieve the stripe data from the relevant nodes before generating the parity. However, in
general, it is likely that the active data set on the replication node will contain all or most
of the data blocks in a particular stripe because of locality and small working set sizes [11].
We would like to keep the stripe length small so as to make sure that the entire stripe is
in the active data set on the replication node. This is also desirable for reliability reasons
since it reduces the size of the redundancy group. A reasonable stripe length is 5 nodes,
thus requiring 200 stripes to span a 1000 node system.

3 Reliability

As mentioned above, as we increase the number of nodes in a large scale storage system,
RAID5 parity striping no longer provides sufficient redundancy to give adequate system
reliability. The use of DPGADR can improve system reliability significantly. Since re-
cently used data is copied to a replication node, the system exhibits mean time to data loss
(MTTDL) characteristics near to that of a mirrored system. Figure 2 illustrates how the
system can tolerate more than one failure in a redundancy set and still recover the most
recent data. Even though two nodes have failed, the active data blocks, D11’ and D32’, are
still available from the replication node. In fact if all the nodes except for the replication
node fail, the DPGADR method allows for the recovery of all active data. While the repli-
cation node can prevent loss of active data in the presence of multiple failures, inactive data
can still be lost if there is more than one fault. To prevent data loss in such a scenario, we
require that the system have judicious backup procedures so that all inactive data is present
on backup media. The replication node must be large enough to accommodate all active
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Figure 2: DPGADR failure scenario.

data between backups. This need not be that large as the working set size of a storage
system over a 24 hour period is typically around 5% of the entire storage space [11]. Thus,
it is sufficient to have one replication node for every 20 data nodes and using daily backups
to prevent data loss of inactive data in the presence of dual faults. We also suspend access
to the DPGADR group once a second fault has been recorded. This prevents invalid data
being read from inactive data blocks. Thus, the DPGADR method prevents data loss in
most dual fault cases but system availability is the same as a RAID system because of the
access blocking due to a second fault.

We can develop a model for the MTTDL and availability of a DPGADR system using
a similar analysis methodology to that outlined in [10]. The nodes are assumed to have
independent and exponential failure rates. We assume d nodes per parity group, one redun-
dancy node per nG parity groups, and the mean time to failure of each node is MTTFNode

The MTTDL for a DPGADR group is:

MTTDLDPGADR =

MTTFNode

nG(d+1)+1

Pr[data loss failure during repair time]
(1)

Data loss during the repair time of the failed node can happen in three cases: 1) the
first failed node was the replication node and any other node fails, 2) the first failed node
was not the replication node and the replication node fails, and 3) the failed node was not
the replication node and two non-replication nodes in the same parity group fail. Thus, the
probability of data loss causing failure during the repair time is as follows:

Pr[data loss failure during repair time] =

Pr[first failed node was a replication node]pf

+ (1 − Pr[first failed node was a replication node])(prf + p2f ) (2)

where pf is the probability that any one of the remaining nG(d + 1) nodes fails during
the repair time, prf is the probability that the replication node fails during the repair time,
and p2f is the probability that 2 non-replication nodes from the same parity group fail
during the repair time. The derivation of pf is straightforward. If we define the mean time
to repair the node as MTTRNode, then assuming exponential failure rates,

pf ≈

MTTRNode

nG(d+1)

MTTFNode

(3)
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Configuration MTTDL (years) Redundancy overhead
RAID5 (d=5) 7.9 200 nodes
Mirror 23.8 1000 nodes
DPGADR (d=5,nG=4) 39.6 250 nodes

Table 1: MTTDL and Overhead for a 1000 data node system. (MTTFNode = 100000 hours
and MTTRNode = 24 hours

when MTTFNode � MTTRNode. Similarly, prf is equal to MTTRNode

MTTFNode

. p2f can be
expressed as follows:

p2f =
(

d

2

)
(MTTRNode

MTTFNode

)2(1 −
MTTRNode

MTTFNode

)d−1
≈

d(d − 1)

2

(MTTFNode

MTTRNode

)2
(4)

Substituting into Eqs. 1 and 2, we arrive at:

MTTDLDPGADR =
MTTFNode

nG(d+1)+1

1
nG(d+1)+1

[ MTTRNode

nG(d+1)MTTFNode

] + nG(d+1)
nG(d+1)+1

[MTTRNode

MTTFNode

+ d(d−1)
2

(MTTRNode

MTTFNode

)2]

≈
MTTF 2

Node

nG(d + 1)MTTRNode

(5)

In a large system with nS DPGADR groups, the MTTDL is MTTF 2

Node

nSnG(d+1)MTTRNode

. If
we define D as the total number of data nodes in the system, i.e. nSnGd, we can rewrite

MTTDL as MTTF 2

Node

D(1+ 1

d
)MTTRNode

. The redundancy overhead to support parity and replica-

tion is D
d

+ D
nG d

. By comparison, a mirrored system with D data nodes has a MTTDL

of MTTF 2

Node

2D MTTRNode

with an overhead of D nodes, and a RAID5 system has an MTTDL of
MTTF 2

Node

D(d+1) MTTRNode

and an overhead of D
d

nodes. The DPGADR system actually has better
MTTDL times than a mirrored system with significantly less redundancy overhead. Ta-
ble 1 shows MTTDL and overhead numbers for a 1000 data node system. Note that while
the MTTDL of a DPGADR system is better than a mirrored system, the availability, i.e.
the probability that the system is available for use, is more like a RAID5 system. This is
because after a second failure, the system is suspended until the repair is complete.

4 Related Work

Xin et al [15], have proposed three different large storage system redundancy architectures
with two fast recovery mechanisms: fast mirroring copy (FMC) and lazy parity backup
(LPB). The LPB method is similar to the DPGADR scheme in that parity calculation is
delayed. However, it relies on a RAID5 redundancy set to be completely mirrored at a
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greater than 100% storage overhead. The DPGADR scheme requires significantly less
overhead since only actively used data is replicated.

Other related work is in the area of RAID5 disk arrays and of particular interest are
parity logging [13], data logging [5], and hot mirroring [9, 14].

The parity logging technique eliminates the need for parity disk accesses by caching the
partial parity formed from the old and new data in non-volatile memory at the controller.
The partial parity can then be periodically flushed to a log disk, which can then be cleaned
out at a later time to generate the actual parity disk data. This process reduces the number
of disk accesses from 4 to 2 and clearly, this reduction in accesses will greatly speed up
the performance of writes in a RAID system. Parity logging, however, is not practical
in a distributed system because of the need to cache data in non-volatile memory. It is
not reasonable to expect distributed system clients to have non-volatile memory available.
Moreover, the management of the cache across multiple clients can be problematic. The
DPGADR system does not require non-volatility at the client since all data is pushed out
to the replication node immediately. Data logging is similar to DPGADR except that it
performs an old data read and stores that to the data log as well. This requires an extra
disk access and the maintenance of log maps requires non-volatile memory at the clients as
well.

Hot mirroring [9] and AutoRAID [14] are similar techniques that attempt to move ac-
tively used data to mirrored regions of the array and less frequently used data to parity
logged regions (hot mirroring) or parity striped regions (AutoRAID). These system require
a background process that evaluates the “hotness” of data and then moves them to or from
mirrored regions as required. If a data block is in the parity striped region, it will remain
there until a background process has tagged it as hot even if it is experiencing high activity.
DPGADR systems, however, dynamically adjust to the activity of the data since the latest
data is always pushed to the mirrored region, i.e. the replication node.

5 Conclusions

In this paper, we have described a delayed parity construction mechanism called DPGADR
that allows parity striping to be used on large scale distributed storage systems without suf-
fering from the small write performance penalty. Compared to mirroring it can reduce the
storage overhead from 100% to less than 20% and compared to parity striping it can reduce
small write accesses to just two parallel accesses. Because of redundancy in the active data
replication node, the overall system reliability is better than mirroring for significantly less
overhead.

References

[1] D. Anderson and J. Chase. Failure-atomic file access in the Slice interposed network
storage system. Cluster Computing, 5(4):411–419, Oct. 2002.

[2] T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D. Roselli, and R. Wang. Server-
less network file systems. In Proceedings of the Symposium on Operating System
Principles, pages 109–126, Dec. 1995.

190



[3] W. Bolosky, J. Douceur, D. Ely, and M. Theimer. Feasibility of a serverless dis-
tributed file system deployed on an existing set of desktop PCs. In Proceedings of
the ACM SIGMETRICS Conference on Measurement and Modeling of Computer Sys-
tems, pages 34–43, June 2000.

[4] J. D. Bright and J. A. Chandy. A scalable architecture for clustered network attached
storage. In Proceedings of the IEEE/NASA Goddard Symposium on Mass Storage
Systems and Technologies, pages 196–206, Apr. 2003.

[5] E. Gabber and H. F. Korth. Data logging: A method for efficient data updates in
constantly active RAIDs. In Proceedings of the International Conference on Data
Engineering, pages 144–153, 1998.

[6] G. A. Gibson and R. Van Meter. Network attached storage architecture. Commun.
ACM, 43(11):37–45, Nov. 2000.

[7] J. H. Hartman and J. K. Ousterhout. Zebra: A striped network file system. In Pro-
ceedings of the USENIX 1992 Workshop on File Systems, May 1992.

[8] E. K. Lee and C. A. Thekkath. Petal: Distributed virtual disks. In Proceedings of the
International Conference on Architectural Support for Programming Languages and
Operating Systems, pages 84–92, Oct. 1996.

[9] K. Mogi and M. Kitsuregawa. Hot mirroring: A method of hiding parity update
penalty and degradation during rebuilds for RAID5. In Proceedings of the ACM
SIGMOD International Conference on Management of Data, pages 183–194, June
1996.

[10] D. A. Patterson, G. A. Gibson, and R. H. Katz. A case for redundant arrays of inex-
pensive disks (RAID). In Proceedings of the ACM SIGMOD International Conference
on Management of Data, pages 109–116, June 1988.

[11] C. Ruemmler and J. Wilkes. A trace-driven analysis of working set sizes. Technical
Report HPL-OSR-93-23, Hewlett-Packard, Palo Alto, CA, Apr. 1993.

[12] F. Schmuck and R. Haskin. GPFS: A shared-disk file system for large computing
clusters. In Proceedings of USENIX Conference on File and Storage Technologies,
pages 231–244, Jan. 2002.

[13] D. Stodolsky, G. Gibson, and M. Holland. Parity logging: Overcoming the small write
problem in redundant disk arrays. In Proceedings of the International Symposium on
Computer Architecture, 1993.

[14] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. The HP AutoRAID hierarchical
storage system. ACM Transactions on Computer Systems, 14(1):108–136, Feb. 1996.

[15] Q. Xin, E. L. Miller, T. Schwarz, D. D. E. Long, S. A. Brandt, and W. Litwin. Relia-
bility mechanisms for very large storage systems. In Proceedings of the IEEE/NASA
Goddard Symposium on Mass Storage Systems and Technologies, pages 146–156,
Apr. 2003.

191



192



193

Reducing Storage Management Costs via Informed User-Based Policies

Erez Zadok, Jeffrey Osborn, Ariye Shater, Charles Wright, and Kiran-Kumar Muniswamy-Reddy
Stony Brook University

{ezk, jrosborn, ashater, cwright, kiran}@fsl.cs.sunysb.edu

Jason Nieh
Columbia University

nieh@cs.columbia.edu

Abstract

Storage management costs continue to increase despite
the decrease in hardware costs. We propose a system to
reduce storage maintenance costs by reducing the amount
of data backed up and reclaiming disk space using vari-
ous methods (e.g., transparently compress old files). Our
system also provides a rich set of policies. This allows ad-
ministrators and users to select the appropriate methods
for reclaiming space. Our performance evaluation shows
that the overheads under normal use are negligible. We re-
port space savings on modern systems ranging from 25% to
76%, which result in extending storage lifetimes by 72%.

1. Introduction

Despite seemingly endless increases in the amount of
storage and decreasing hardware costs, managing storage
is still expensive. Furthermore, backing up more data
takes more time and uses more storage bandwidth—thus
adversely affecting performance. Users continue to fill in-
creasingly larger disks. In 1991, Baker reported that the
size of large files had increased by ten times since the 1985
BSD study [1, 8]. In 2000, Roselli reported that large files
were getting ten times larger than Baker reported [9]. Our
recent studies show that just merely by 2003, large files are
ten times larger than Roselli reported.

Today, management costs are five to ten times the cost of
underlying hardware and are actually increasing as a pro-
portion of cost because each administrator can only manage
a limited amount of storage [4, 7]. We believe that reduc-
ing the rate of consumption of storage is the best solution
to this problem. Independent studies [10] as well as ours
indicate that significant savings are possible.

To improve storage management via efficient use of
storage, we designed the Elastic Quota System (Equota).

Elastic quotas enter users into a contract with the system:
users can exceed their quota while space is available, under
the condition that the system does not provide as rigid as-
surances about the file’s safety. Users or applications may
designate some files as elastic. Non-elastic (or persistent)
files maintain existing semantics. Elastic quotas create a hi-
erarchy of data’s importance: the most important data will
be backed up frequently; some data may be compressed
and other data can be compressed in a lossy manner; and
some files may not be backed up at all. Finally, if the sys-
tem is running short on space, the elastic files may even be
removed. Users and administrators can configure flexible
policies to designate which files belong to which part of
the hierarchy. Elastic quotas introduce little overhead for
normal operations and demonstrate that through this new
disk usage model, significant space savings are possible.

2. Motivational study

Storage needs are increasing—often as quickly as larger
storage technologies are produced. Moreover, each up-
grade is costly and carries with it high fixed costs [4]. We
conducted a study to quantify this growth, with an eye to-
ward reducing this rate of growth.

We identified four classes of files, three of which can
reduce the growth rate and also the amount of data to be
backed up. Similar classifications have been used previ-
ously [6] to reduce the amount of data to be backed up.
First, there are files that cannot be considered for reduc-
ing growth. These files are important to users and should
be backed up frequently, say daily. Second, studies indi-
cate that 82–85% of storage is consumed by files that have
not been accessed in more than a month [2]. Our studies
confirm this trend: 89.1% of files or 90.4% of storage has
not been accessed in the past month. These files can be
compressed to recover space. They need not be backed up
with the same frequency as the first class of files as least-
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Figure 1. Space consumed by different
classes. Actual amounts appear to the right
of the bars, with the total size on top.

recently-used files are unlikely to change in the near fu-
ture. Third, multimedia files such as JPEG or MP3 can be
re-encoded with lower quality. This method carries some
risk because not all of the original data is preserved, but the
data is still available and useful. These files can be backed
up less frequently than other files. Fourth, previous stud-
ies show that over 20% of all files—representing over half
of the storage—are regenerable [10]. These files need not
be backed up. Moreover, these files can be removed when
space runs short.

To determine what savings are possible given the current
usage of disk space, we conducted a study of four sites, to
which we had complete access. These sites include a total
of 3,898 users, over 9 million files, and 735.8GB of data
dating back 15 years: (A) a small software development
company with 100 programmers, management, sales, mar-
keting, and administrative users with data from 1992–2003;
(B) an academic department with 3,581 users, mostly stu-
dents, using data from shared file servers, collected over 15
years; (C) a research group with 177 users and data from
2000–2003; and (D) a group of 40 cooperative users with
personal Web sites and data from 2000–2003.

Each of these sites has experienced real costs associated
with storage: A underwent several major storage upgrades
in that period; B continuously upgrades several file servers
every six months; the statistics for C were obtained from a
file server that was recently upgraded; and D has recently
installed quotas to rein in disk usage.

Figure 1 summarizes our study, starting with the top bar.
We considered a transparent compression policy on all un-
compressed files that have not been accessed in 90 days.
We do not include already compressed data (e.g., .gz),
compressed media (e.g., MP3 or JPEG), or files that are
only one block long. In this situation, we save between
4.6% from group B to 51 % from group C. We yield large

savings on group C: it has many .c files that compress
well. Group B contains a large number of active users, so
the percentage of files that were used in the past 90 days
is less than that in the other sites. The next bar down (top
hatched) is the savings from lossy compression of still im-
ages, videos, and sound files. The results varied from a
savings of 2.5% for group A to a savings of 35% for group
D. Groups B and D contain a large number of personal
.mp3 and .avi files. As media files grow in popularity
and size, so will the savings from a lossy compression pol-
icy. The next bar down represents space consumed by re-
generable files, such as .o files (with corresponding .c’s)
and ˜ files, respectively. This varied between 1.7% for
group B to 40.5% for group A. This represents the amount
of data that need not be backed up, or can be removed.
Group A had large temporary backup tar files that were no
longer needed. The amount of storage that cannot be re-
duced through these policies is the dark bar at the bottom.
Overall, using the three space reclamation methods, we can
save between 25% to 76.5% of the total disk space.

To verify if applying the aforementioned space recla-
mation methods would reduce the rate of disk space con-
sumption, we correlated the average savings we obtained
in the above environments with the SEER [5] and Roselli
[9] traces. We require filename and path information, since
our space reclamation methods depend on file types, which
are highly correlated with names [3]. We evaluated sev-
eral other traces, but only the combination of SEER and
Roselli’s traces provides us with the information we re-
quired. The SEER traces have pathname information but do
not have file size information. Roselli’s traces do not con-
tain any file name information, but have the file size infor-
mation. We used the size information obtained by Roselli
to extrapolate the SEER growth rates. The Roselli traces
were taken around the same time of the SEER traces, and
therefore give us a good estimate of the average file size on
a system at the time. At the rate of growth exhibited in the
traces, the hard drives in the machines would need to be
upgraded after 11.14 months. We observed that our poli-
cies extended the disks’ lifetime to 19.2 months. The disk
space growth rates were reduced by 52%. Based on these
results, we have concluded that our policies offer promising
storage management cost-reduction techniques.

3. Design

Our two primary design goals were to allow for versatile
and efficient elastic quota policy management. To achieve
versatility we designed a flexible policy configuration lan-
guage for use by administrators and users. To achieve effi-
ciency we designed the system to run as a kernel file system
with a database, which associates user IDs, file names, and
inode numbers. Our present implementation marks a file as
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elastic using a single inode bit. A more complex hierarchy
could be created using extended attributes.

Architecture Figure 2 shows the overall architecture of
our system. There are four components in our system: (1)
EQFS is a stackable file system that is mounted on top of
another file system such as Ext3 [13]. EQFS includes a
component (Edquot) that indirectly manages the kernel’s
native quota accounting. EQFS also sends messages to a
user space component, Rubberd. (2) Berkeley DB (BDB)
databases record information about elastic files [11]. We
have two types of databases. First, for each user we main-
tain a database that maps inode numbers of elastic files
to their names, allowing us to easily locate and enumer-
ate each user’s elastic files. The second type of database
records an abuse factor for each user denoting how “good”
or “bad” a given user has been with respect to historical
utilization of disk space. (3) Rubberd is a user-level dae-
mon that contains two threads. The database management
thread is responsible for updating the BDB databases. The
policy thread periodically executes cleaning policies. (4)
Elastic Quota Utilities are enhanced quota utilities that
maintain the BDB databases and control both persistent and
elastic quotas.

System Operation EQFS intercepts file system opera-
tions, performs related elastic quota operations, and then
passes the operation to the lower file system (e.g., Ext2).
EQFS also intercepts the quota management system call
and inserts its own set of quota management operations,
edquot. Quota operations are intercepted in reverse (e.g.,
from Ext2 to the VFS), because only the native disk-based
file system knows when an operation has resulted in a
change in the consumption of inodes or disk blocks.

Each user on our system has two UIDs: one that ac-
counts for persistent usage and another that accounts for

elastic usage. The latter, called the shadow UID, is simply
the ones-complement of the former. When an Edquot op-
eration is called, Edquot determines if it was for an elastic
or a persistent file, and informs dquot to account for the
changed resource (inode or disk block) for either the UID
or shadow UID. This allows us to use the existing quota
infrastructure and utilities to account for elastic usage.

EQFS communicates information about creation, dele-
tion, renames, hard links, and ownership changes of elas-
tic files to Rubberd’s database management thread over a
netlink socket. Rubberd records this information in the
BDB databases. Rubberd also records historical abuse fac-
tors for each user periodically, denoting the user’s elastic
space utilization over a period of time.

Elasticity Modes EQFS can determine a file’s elasticity
in five ways. (1) Users can explicitly toggle the file’s elas-
ticity, allowing them to control elasticity on a per file basis.
(2) Users can toggle the elastic bit on a directory inode.
Newly created files or sub-directories inherit the elastic bit.
(3) Users can tell EQFS to create all new files elastically
(or not). (4) Users can tell EQFS which newly-created files
should be elastic by their extension. (5) Developers can
mark files as elastic using two new flags we added to the
open and creat system calls. These flags tell EQFS to
create the new file as elastic or persistent.

4. Elastic quota policies

The core of the elastic quota system is its handling of
space reclamation policies. File system management in-
volves two parties: the running system and the people (ad-
ministrators and users). To the system, file system recla-
mation must be efficient so as not to disturb normal op-
erations. To the people involved, file system reclamation
policies must consider three factors: fairness, convenience,
and gaming. These three factors are important especially
in light of efficiency as some policies can be executed more
efficiently than others. We describe these three factors next.

Fairness Fairness is hard to quantify precisely. It is often
perceived by the individual users as how they personally
feel that the system and the administrators treat them. Nev-
ertheless, it is important to provide a number of policies
that could be tailored to the site’s own needs. For example,
some users might consider a largest-file-first compression
or removal policy unfair because recently-created files may
not remain on the system long enough to be used. For these
reasons, we also provide policies that are based on individ-
ual users’ disk space usage: users that consume more disk
space over longer periods of time are considered the worst
offenders. Once the worst offenders are determined and the



196

amount of disk space to clean from the users is calculated,
the system must decide which specific files should be re-
claimed from that user. Basic policies allow for time-based
or size-based policies for each user. For the utmost in flex-
ibility, users are allowed to define their own ordered list of
files to be processed first.

Convenience For a system to be successful, it should be
easy to use and simple to understand. Users should be able
to find out how much disk space they are consuming in per-
sistent and elastic files and which of their elastic files will
be removed first. Administrators should be able to config-
ure new policies easily. The algorithms used to define a
worst offender should be simple and easy to understand.
For example considering the current total elastic usage is
simple and easy to understand. A more complex and fair
algorithm could count the elastic space usage over time as
a weighted average, although it might be more difficult for
users to understand.

Gaming Gaming is defined as the ability of individual
users to circumvent the system and prevent their files from
being processed first. Good policies should be resistant
to gaming. For example, a global LRU policy that com-
presses older files could be circumvented simply by reading
those files. Policies that are difficult to circumvent include
a per-user worst-offender policy. Regardless of the file’s
attributes, a user still owns the same total amount of data.
Such policies work well on systems where it is expected
that users will try to exploit the system.

4.1. Rubberd configuration files

When Rubberd has to reclaim space, it first determines
how much space it should reclaim—the goal. The configu-
ration file defines multiple policies, one per line. Rubberd
then applies each policy in order until the goal is reached
or no more policies can be applied. Each policy in this file
has four parameters. (1) type defines what kind of policy to
use and can have one of three values: global for a global
policy, user for a per-user policy, and user profile
for a per-user policy that first considers the user’s own per-
sonal policy file. (2) method defines how space should be
reclaimed. Our prototype currently defines two policies:
gzip compresses files and rm removes them. This al-
lows administrators to define a system policy that first com-
presses files and then removes them if necessary. A policy
using mv and tar could be used together as an HSM sys-
tem, archiving and migrating files to slower media at clean-
ing time. (3) sort defines the order of files being reclaimed.
We define several keys: size (in disk blocks) for sorting
by largest file first, mtime for sorting by oldest modifica-
tion time first, and similarly for ctime and atime. (4) fil-

ter is an optional list of file name filters to apply the policy
to. If not specified, the policy applies to all files. If users
define their own policy files and Rubberd cannot reclaim
enough space, then Rubberd continues to reclaim space as
defined in the system-wide policy file. HSM systems oper-
ate similarly, however, at a system-wide level [6].

4.2. Abuse factors

When Rubberd reclaims disk space, it must provide a
fair mechanism to distribute the amount of reclaimed space
among users. To decide how much disk space to reclaim
from each user, Rubberd computes an abuse factor (AF)
for all users. Rubberd then distributes the amount of space
to reclaim from each user proportionally to their AF. We
define two types of AF calculations: current usage and
historical usage. Current usage can be calculated in three
ways. First, Equota can consider the total elastic usage (in
disk blocks) the user consumes. Second, it can consider
the total elastic usage minus the user’s available persistent
space. Third, Equota can consider the total amount of space
consumed by the user (elastic and persistent). These three
modes give a system administrator enough flexibility to cal-
culate the abuse fairly given any group of users (we also
have modes based on a percentage of quota). Historical
usage can be calculated either as a linear or as an exponen-
tial average of a user’s disk consumption over a period of
time (using the same metrics as current usage). The linear
method calculates a user’s abuse factor as the linear aver-
age over time, whereas the exponential method calculates
the user’s abuse with an exponentially decaying average.

4.3. Cleaning operation

To reclaim elastic space, Rubberd periodically wakes up
and performs a statfs to determine if the high watermark
has been reached. If so, Rubberd spawns a new thread to
perform the reclamation. The thread reads the global pol-
icy file and applies each policy sequentially, until the low
watermark is met or all policy entries are applied.

The application of each policy proceeds in three phases:
abuse calculation, candidate selection, and application. For
user policies, Rubberd retrieves the abuse factor of each
user and then determines the number of blocks to clean
from each user proportionally to the abuse factor. For
global policies this step is skipped since all files are consid-
ered without regard to the owner’s abuse factor. Rubberd
performs the candidate selection and application phases
only once for global policies. For user policies these two
phases are performed once for each user. Rubberd then gets
the attributes (size and times) for each file (EQFS allows
Rubberd to get these attributes more efficiently by inode
number rather than by name as required by stat). Rub-



197

berd then sorts the candidates based on the policy (e.g.,
largest or oldest files first). In the application phase, we
reclaim disk space (e.g., compress the file) from the sorted
candidates. Cleaning terminates once enough space has
been reclaimed.

5. Related work

Elastic quotas are complementary to HSM systems.
HSM systems provide disk backup as well as ways to re-
claim disk space by moving less-frequently accessed files
to a slower disk or tape. These systems then provide a way
to access files stored on the slower media, ranging from file
search software to replacing the migrated file with a link to
its new location. Several HSM systems are in use today in-
cluding UniTree, SGI DMF (Data Migration Facility), the
SmartStor Infinet system, IBM Storage Management, Veri-
tas NetBackup Storage Migrator, and parts of IBM OS/400.
HP AutoRaid migrates data blocks using policies based on
access frequency [12]. Wilkes et. al. implemented this at
the block level, and suggested that per-file policies in the
file system might allow for more powerful policies; how-
ever, they claim that it is difficult to provide an HSM at the
file system level because there are too many different file
system implementations deployed. We believe that using
stackable file systems can mitigate this concern, as they are
relatively portable [13]. In addition, HSMs typically do not
take disk space usage per user over time into consideration,
and users are not given enough flexibility in choosing stor-
age control policies. We believe that integrating user- and
application-specific knowledge into an HSM system would
reduce overall storage management costs significantly.

6. Conclusions

The main contribution of this paper is in the exploration
and evaluation of various elastic quota policies. These poli-
cies allow administrators to reduce the overall amount of
storage consumed and to control what files are backed up
when, thereby reducing overall backup and storage costs.
Our system includes many features that allow both site ad-
ministrators and users to tailor their elastic quota policies
to their needs. Through the concept of an abuse factor we
have introduced historical use into quota systems. Finally,
our work provides an extensible framework for new or cus-
tom policies to be added.

We evaluated our Linux prototype extensively. Per-
formance overheads are small and acceptable for day-
to-day use. We observed an overhead of 1.5% when
compiling gcc. For a worst-case benchmark, cre-
ation and deletion of empty files, our overhead is
5.3% without database operations (a mode that is use-
ful when recursive scans may already be performed by

backup software) and as much as 89.9% with optional
database operations. A full version of this paper, in-
cluding a more detailed design and a performance eval-
uation, is available at www.fsl.cs.sunysb.edu/
docs/equota-policy/policy.pdf.
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Abstract 

In large distributed Object-based Storage Systems, the performance, availability and 
scalability of the Metadata Server (MDS) cluster are critical. Traditional MDS cluster 
suffers from frequent metadata access and metadata movement within the cluster. In this 
paper, we present a new method called Hashing Partition (HAP) for MDS cluster design 
to avoid these overheads. We also demonstrate a design using HAP to achieve good 
performance of MDS cluster load balancing, failover and scalability. 
 
1. Introduction 

Unlike traditional file storage systems with 
metadata and data managed by the same 
machine and stored on the same device [1], 
the object-based storage system separates 
the data and metadata management. An 
Object-based Storage Device (OSD) [2] 
cluster manages low-level storage tasks such 
as object-to-block mapping and request 
scheduling, and presents an object access 
interface instead of block-level interface [3]. 
A separate cluster of MDS manages 
metadata and file-to-object mapping, as 
shown in Figure 1. The goal of such storage 
system with specialized metadata 
management is to efficiently manage 
metadata and improve the overall system 
performance. In this paper, we mainly 
address performance, availability and 
scalability issues for the design of MDS 
cluster in Object-based Storage Systems. 
 
Two key concerns about MDS cluster are 
the request load of metadata and load 
balancing within the cluster. In our 
preliminary OSD prototype, which adopts 
the traditional directory sub-tree to manage 
metadata, we find that more than 70 percent 
of all file system access requests are for 
metadata when using Postmark [4] to access 
0.5k files, as shown in Figure 2. Although 
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Figure 1. Object-based Storage System 

Figure 2 shows the data request percent (Dreq%)
and the metadata request percent (Mreq%) of the
total requests. This test is based on our OSD
prototype (one client, one MDS and one OSD)
connected by Fibre Channel, using Postmark
(1000 files, 10 subdirectories, random access,
500 transactions). 
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the size of the metadata is generally small compared to the overall storage capacity, the 
traffic volume of such metadata access degrades the system performance. The large 
number of metadata requests can be attributed to the use of directory sub-tree metadata 
management. 
 
Apart from metadata requests, an uneven load distribution within a MDS cluster would 
also raise severe bottleneck. Based on traditional cluster architecture, the performance of 
the load balancing, failover and scalability in the MDS cluster is limited, because most of 
these operations lead to the inevitable massive metadata movement within cluster. The 
Lazy Hybrid metadata management method [5] presented a hashing metadata 
management with the hierarchical directory support, which dramatically reduced the total 
number of metadata requests, but Lazy Hybrid did not deal with reducing metadata 
movement between MDSs for load balancing, failover and scalability. 
 
This paper presents the new method called Hashing Partition (HAP) for MDS cluster 
design. HAP herein also adopts the hashing method, but focuses on reducing the cross 
MDS metadata movement in a clustered design, in order to achieve high performance of 
load balancing, failover and scalability. 
 
The rest of the paper is organized as follows. The next section details the design of HAP 
and section 3 demonstrates our solutions of MDS Cluster load balancing, failover and 
scalability. Section 4 discusses MDS Cluster Rebuild. Finally, the conclusion of the paper 
is drawn in section 5. 
 
2. Hashing Partition 

Hashing Partition (HAP) provides a total solution for the file hashing, metadata 
partitioning, and metadata storage. There are three logical modules in the HAP: file 
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hashing manager, mapping manager, and logical partition manager, as shown in Figure 3.  
 
In addition, HAP employs an independent common storage space for all MDSs to store 
metadata, and this space is divided into multiple logical partitions. Each logical partition 
contains part of global metadata table. Each MDS can mount and then exclusively access 
logical partitions allocated to it. Thus as a whole, MDS cluster can access a unique global 
metadata table. 
 
The procedure of metadata access is described as follows. Firstly, file hashing manager 
hashes a filename to an integer, which can be mapped to the partition that stores the 
metadata of the file. Secondly, mapping manager can figure out the identity number of 
MDS that currently mounts that partition. Then client can send metadata request with the 
hash value of pathname to the MDS. Finally, logical partition manager located in MDS 
side accesses metadata on the logical partition in the common storage space. Figure 4 
describes this efficient metadata access procedure. Normally, only a single message to a 
single metadata server is required to access a file’s metadata. 
 
2.1. File Hashing Manager 

File hashing manager performs two kinds of hashing: filename hashing for partitioning 
metadata in MDS cluster, and pathname hashing for the metadata allocation in MDS. To 
access metadata of a file in MDS cluster, client needs to know two facts: which MDS 
manages the metadata and where the metadata is located in the logical partition. Filename 
hashing answers the first question and pathname hashing solves the second one. For 
example, if the client needs to access the file, “/a/b/filec”, client uses the hashing result of 
“filec” to select MDS that manages the metadata. Then instead of accessing directory “a” 
and “b” to know where is the metadata of “filec”, a hash result of “/a/b/filec”, directly 
indicates where to retrieve the metadata. 
 
But the filename hashing may introduce a potential bottleneck when a large parallel 
access to different files with the same name in different directories. Fortunately, the 
different hash values of various popular filenames, such as readme and makefile, make all 
these “hot points” distributed among MDS cluster and reduce the possibility of the 
potential bottleneck. In addition, even if certain MDS is over-loaded, our dynamic load 
balancing policy (section 3.1) can effectively handle this scenario and shift the “hot 
points” from overloaded MDS to the less-loaded MDSs. 
 
2.2. Logical Partition Manager 

Logical partition manager manages all logical partitions in the common storage space. It 
performs many logical partition management tasks, e.g. mount/un-mount, backup and 
Journal recovery. For instance, logical partition manager can periodically backup logical 
partitions to a remote backup server. 
 
2.3. Mapping Manager 

Mapping manager performs two kinds of mapping tasks: hashing result to logical 
partition mapping and logical partition to MDS mapping. Equation 1 describes these two 
mapping functions. 



202

 

)0(

},0{;,0)(;,0

),,(

))((

MnPnHn

MnMDSiHnfilenameHPnPi

MWiPWiPiMLMDSi

filenameHfPi

         (1) 

Where, H represents a filename hashing function; f stands for the mapping function that 
transfers hashing result to partition number (Pi); ML represents the function that figures 
out MDS number (MDSi) from partition number and related parameters (PW and MW 
will be explained in section 3.1); Pn is the total number of partitions; Hn is the maximum 
hashing value and Mn is the total number of MDSs. 
 
When PW and MW are set, mapping 
manager simplifies the mapping function 
ML to a mapping table MLT, which 
describes the current mapping between 
MDS and logical partition. It is noted that 
one MDS can mount multiple partitions, but 
one partition can only be mounted to one 
MDS. To access metadata, mapping 
manager can indicate the logical partition that stores the metadata of a file based on the 
hash result of the filename. Then through MLT, mapping manager knows which MDS 
mounts that partition and manages the metadata of the file. Finally the client contacts the 
selected metadata server to obtain the file’s metadata, file-to-object mapping and security 
information. Table 1 gives an example of MLT. Based on this table, in order to access 
metadata on logical partition 18, client needs to send request to MDS1. 
 
3. Load Balancing, Failover and Scalability 

3.1. MDS Cluster Load Balancing Design 

We propose a simple Dynamic Weight algorithm to dynamically balance the load of 
MDSs. HAP assigns a MDS Weight (MW) to each MDS according to its CPU power, 
memory size and bandwidth, and uses a Partition Weight (PW) to reflect the access 
frequency of each partition. MW is a stable value if the hardware configuration of the 
MDS cluster does not change, and PW can be dynamically adjusted according to the 
access rate and pattern of partitions. In order to balance the load between MDSs, mapping 
manager allocates partitions to MDS based on Equation 2. 
 

Mn
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MWa

PWa

MWi

PWi

0

0                                        (2) 

Where, PWi presents the sum of PW of all partitions mounted by MDSi; Pn stands for 

the total number of partitions; Mn presents the total number of MDSs. 
 
In addition, each MDS needs to maintain load information about itself and all partitions 
mounted on it, and periodically uses Equation 3 to calculate new values. 
 

Table 1.  Example of MLT 

Logical partition 

Number 

MDS 

ID 

MDS Weight 

0~15 0 300 

16~31 1 300 

32~47 2 300 

48~63 3 300 
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Where, MDSCURLOAD is the current load of the MDS; PCURLOAD is the current load 
of the logical partition; MDSLOAD(i) represents the load status of a MDS at time i; 

PLOAD(i) stands for the load status of a logical partition at time i; and are constant 

used to balance the effects of old value and new value. 
 
However, MDSs don’t report their load information to the master node, e.g. one 
particular MDS, until a MDS alarms in its overloaded situation, such as the MDSLOAD 
exceeding the preset maximum load of the MDS. After receiving load information from 
all MDSs, the master node sets the PW using new PLOAD values. Then according to new 
PW and Equation 2, HAP shifts the control of certain partitions from the over-loaded 
MDS to some less-loaded MDSs and modifies MLT accordingly. This adjustment does 
not involve any physical metadata movement between MDSs. 
 
3.2. MDS Cluster Failover Design 

Typically, a conventional failover design 
adopts a standby server to take over all 
services of the failed server. In our design, 
the failover strategy relies on the clustered 
approach. In the case of a MDS failure, 
mapping manager assigns other MDSs to 
take over the work of the failed MDS 
based on Equation 2. Then the logical 
partition manager allocates the logical 
partitions managed by the failed MDS to 
its successors, as shown in Figure 5. So 
application servers can still access 
metadata on the same logical partition in 
the common storage space through the 
successors. 
 
3.3. MDS Cluster Scalability Design 

HAP significantly simplifies the procedure to scale the metadata servers. If the current 
MDS cluster cannot handle metadata request effectively due to the heavy load, new 
MDSs can be dynamically set up to release the overhead of others. HAP method allows 
the addition of MDS by adjusting MWs and thus generating a new MLT based on ML. 
This process doesn’t touch the mapping relationship between filename and logical 
partition, because the number of logical partitions is unchanged. Following the new MLT, 
logical partition manager un-mounts certain partitions from existing MDSs and mounts 
them to the new MDS. This procedure also doesn’t introduce any physical metadata 
movement within MDS cluster. 
 
4. MDS Cluster Rebuild 

Although HAP method can dramatically simplify the operation of MDS addition and 
removal, HAP actually has a scalability limitation, called Scalability Capability. The 
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preset number of logical partitions limits Scalability Capability, since one partition can 
only be mounted and accessed by one MDS at a time. For instance 64 logical partitions 
can only support up to 64 MDSs without rebuild. In order to improve Scalability 
Capability, we can add storage hardware to create new logical partitions and redistribute 
metadata among the entire cluster. This metadata redistribution introduces multi-MDS 
communication because the change in the number of logical partitions requires a new 
mapping function f in Equation 1, and affects the metadata location of the existing files in 
logical partitions. For example, after Scalability Capability is improved from 64 to 256, 
the metadata of a file may need to move from logical partition 18 to logical partition 74. 
The procedure that redistributes all metadata based on new mapping policy and improves 
Scalability Capability, is called MDS Cluster Rebuild. 
 
In order to reduce the response time of MDS cluster rebuild, HAP adopts Deferred 
Update algorithm, which defers metadata movement and distributes its overhead. After 
receiving the cluster rebuild request, HAP saves a copy of the mapping function f, creates 
a new f based on the new number of logical partitions, and generates a new MLT. Then 
logical partition manager mounts all logical partitions including both the old and new 
according to the new MLT. After that, HAP responses immediately to the rebuild request 
and changes MDS cluster to a rebuild mode. Thus the initial operation for this entire 
process is very fast.  
 

18

Logical Partitions

74

MDS Cluster

Metadata Asker
(MDS or Client)

Pathname: /a/b/filec

Metadata Asker
(MDS or Client)

Pathname: /a/b/filec

1

2

3

New

Old

Metadata

in local?

Where?

Metadata 

in remote?

3 4

Y

Metadata 

in local?

5 5 6

Metadata Request

From Client

From other MDS

N

N

Y
Y N

Op. A

Op. A

1.Computing old partition 

number based on the old f

2.Finding the MDS that 

mounting the old partition 

based on the new MLT

3.Issuing a request to get 

metadata from the MDS.

Op. A

5
6

4

Figure 6. MDS Cluster Rebuild 

.Sending request to MDS based on new mapping result, .Searching for metadata and making 

judgment (the rectangle on the left shows the internal logic and Op. A is explained in the bottom 

rectangle), .Returning metadata and deleting it in local, .Reporting Error, .Returning 

metadata, .Wrong filename 



205

During the rebuild, the behavior of the system is as if all the metadata had been moved to 
the right logical partitions. Actually, HAP updates or moves the metadata upon the first 
access. If a MDS receives a metadata request, and the metadata hasn’t been moved to the 
logical partition that is mounted by it, the MDS needs to use the old mapping function f to 
calculate the original logical partition number based on the filename. Then through the 
new MLT, the MDS can find the MDS that currently mounts the original logical partition 
and send a metadata request to it. So the MDS can retrieve the metadata and complete the 
metadata movement. Figure 6 describes this procedure in detail. In addition, in order to 
accelerate the metadata movement progress, HAP can also adopt an independent thread to 
travel the metadata database and move the affected metadata only during the spare time 
of system. 
 
5. Conclusion 

We present a new method of Hashing Partition to manage metadata server cluster in large 
distributed object-based storage system. We use hashing method to avoid the numerous 
metadata accesses, and use filename hashing policy to remove the overhead of multiple 
MDS communication. Furthermore, based on the concept of logical partitions in the 
common storage space, HAP method significantly simplifies the implementation of the 
MDS cluster and provides efficient solutions for load balancing, failover and scalability. 
 
The design described in this paper is part of our BrainStor project that targets to provide 
the full object-based storage solution. Currently we are implementing the Hashing 
Partition management for MDS Cluster in the BrainStor prototype. We also plan to 
explore the application of BrainStor technologies in Grid storage. 
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Abstract 

iSCSI is a network storage technology designed to provide an economical solution over a 

TCP/IP Network. This paper presents a new iSCSI design with multiple TCP/IP 

connections. The prototype is developed and experiments are conducted for performance 

evaluation on Gigabit Ethernet (GE). Test results show that the new iSCSI design 

improves performance 20%~60% compared with normal iSCSI architecture. Throughput 

can reach 107MB/s for big I/O and I/O rate can reach 15000 IOPS for small I/O.   

 

1. Introduction 

iSCSI is a network storage technology which transports SCSI commands over TCP/IP 

network. It has attracted a lot of attention due to the following advantages:  

 

a. Good scalability.  iSCSI is based on SCSI protocol and TCP/IP network, which 

can provide good scalability.  

b. Low-cost.  iSCSI can share and be compatible with existing TCP/IP networks. The 

user does not need to add any new hardware.  

c. Remote data transferring capability. TCP/IP network can extend to metro area, 

which makes iSCSI suitable for remote backup and disaster recovery applications.  

 

Most current iSCSI implementations use software solutions in which iSCSI device 

drivers are added on top of the TCP/IP layer for off-the-shelf network interface cards 

(NICs). It may cause performance issue. Many iSCSI researches and projects have been 

carried out to analyze the problem. A prior research project of iSCSI – Netstation project 

of USC showed that it was possible for iSCSI to achieve the 80% performance of 

direct-attached SCSI device [1]. IBM Haifa Research Lab carried out research on the 

design and the performance analysis of iSCSI [2, 3].  Bell Laboratories also did some 

test and performance study of iSCSI over metro network [4]. Some of solutions have also 

been brought forward to handle the performance issue. A research group proposed a 

solution to use memory of iSCSI initiator to cache iSCSI data [5].  Other solutions 

included using a TCP/IP offload Engine (TOE) [6] and even iSCSI adapter [7] to reduce 
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the burden of host CPU by offloading the processing of  TCP/IP and iSCSI protocol into 

the hardware on the network adapter. But these hardware solutions will add the extra cost 

compared to a software solution.   

 

The improvement of semiconductor technology has led to the rapid increase of CPU 

speed and memory access speed. During the past two years, commercial CPU speed has 

almost tripled from 1GHz to 3GHz, and memory bandwidth has also doubled from 

around 200~300MB/s to around 400~500MB/s. A powerful hardware platform makes it 

possible to achieve good performance for iSCSI software solutions. 

 

The paper presents a new software iSCSI design and implementation, which employs 

multiple TCP/IP connections. Experiments are conducted on the GE network both in the 

lab and metro network environment. Testing results are analyzed and discussed.  

 

2. Software iSCSI Design 

2.1 iSCSI Storage Architecture 

Figure 1 shows an iSCSI storage architecture including an initiator and a target, which 

communicate to each other via the iSCSI protocol.  In the initiator, the application, 

which needs to store and access data to/from the storage device, issues file requests. The 

file system converts file requests to block requests from application to block device layer 

and SCSI layer. The initiator iSCSI driver encapsulates SCSI commands in iSCSI 

Protocol Data Units (PDUs) and sends them to the Ethernet network via the TCP/IP layer. 

The target iSCSI driver receives iSCSI PDUs from TCP/IP layer and de-capsulates it. 

Then SCSI commands are mapped to RAM, called RAM I/O, or mapped to an actual 

magnetic storage disk, called DISK I/O.  The target driver then sends response data and 

status back to the TCP/IP layer. The low-level flow control of iSCSI fully follows the 
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Fig 2. Multiple parallel connections iSCSI architecture  

TCP/IP and Ethernet communication mechanism, which connects initiator and target by 

IP network. It is noted that two data copies and one DMA are processed in the initiator 

side during one IO access. For RAM I/O, one data copy and one DMA are processed in 

target. 

 

2.2  A new iSCSI Design and Implementation  

Normal iSCSI implementation is based on the single TCP/IP connection, which may not 

sufficiently utilize the network bandwidth. Furthermore, it may face serious performance 

issue caused by packets loss and long latency in metro network environment. We 

propose a new iSCSI architecture with multiple TCP/IP connections.  This new 

architecture actually employs multiple virtual connections over one physical Ethernet 

connection (by one NIC), which is different from general idea of multiple Ethernet 

physical connections (by multiple NICs) according to iSCSI Request for Commands 

(iSCSI RFC) documents. The new design supposes not only to improve the iSCSI 

performance by increasing the utilization of network bandwidth, but also to provide a 

better mechanism to handle the long latency issue in metro network environment. 

The working principle of our new design is shown in Figure 2. Multiple virtual TCP/IP 

connections are built on one physical Ethernet connection. One connection is used for 

sending SCSI request from initiator to target; another one is used for sending response 

from target to initiator. One pair of transmitting thread (Tx_thread) and receiving thread 

(Rx_thread), which locate in initiator or target respectively, are responsible for data 

communication within one connection.  

We use the read operation as an example to explain the detailed communication 

procedure. The SCSI middle layer is a standard interface for SCSI layer to communicate 

with iSCSI device driver. The two main functions of SCSI middle layer are 

queuecommand( ) which issues SCSI command to the iSCSI driver and done( ) which 

informs SCSI middle layer that the command is finished by iSCSI driver. The iSCSI 
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initiator driver gets read commands from SCSI middle layer. These commands are 

encapsulated in iSCSI request PDUs and then queued in the initiator command-queue. 

As shown in Figure 2, The Tx_thread of connection 1 sends these PDUs from 

command-queue to the target. The target driver receives these PDUs by the Rx_thread of 

the same connection. After de-encapsulating iSCSI request PDUs and mapping SCSI 

commands to the storage device, the target driver gets data from storage device and 

forms iSCSI response PDUs (including data and status). Then these iSCSI response 

PDUs are queued in the response-queue. Tx_thread in the target sends these PDUs by 

connection 2. The initiator driver receives response through the Rx_thread of the 

connection 2. Then the initiator driver put it to done-queue to call the done( ) function to 

finish the SCSI exchange.  

As multiple connections are used, synchronization becomes important. According to 

iSCSI draft, the “initiator task tag” is used to record the sequence number of the iSCSI 

command in every iSCSI PDU. Related data and Status PDUs of the iSCSI command 

attach the same “initiator task tag”. Even if multiple connections are used and command 

queue is enabled in both initiator and target, the device driver can easily find respective 

data/status PDUs from the pending queue. 

 

3. Experiments 

Figure 3 shows the system configuration used in our iSCSI experiments in the lab 

environment. One Nera-summit-5i Gigabit Ethernet (GE) switch (supporting 9K jumbo 

frames) is used to connect iSCSI initiator and target. One Finisar GTX THG iSCSI 

analyzer is used to monitor and capture all Ethernet packets for detailed analysis.  

Further experiments are conducted in the metro network environment. iSCSI initiator and 

target are connected through fiber with the aid of DWDM switch over 25KM physical 

distance, as shown in Figure 4. 

Fig. 3 Experiment platform in Lab          

 

Fig.4 Metro network experiment 
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The hardware configuration of the iSCSI target includes a 64-bit/133MHz PCI-X 

motherboard with 2.4GHz P4 processor and 512M RAM. The iSCSI initiator is 

implemented on a 64-bit/66MHz PCI motherboard with 2.4GHz P4 processor and 

256MB RAM. Intel PRO1000F GE network interface cards (NICs) are used at both 

iSCSI initiator and target.  All experiments are based on Redhat Linux 8.0 (kernel 

version 2.4.20).  TCP network performance of the system is tested by netperf. Result 

shows that throughput can reach 939.8Mbps with maximum 70% CPU utilization.  

 

RAM I/O mode or DISK I/O mode is used in iSCSI target. RAM I/O directly maps 

requests to memory. In DISK I/O test, to diminish the impact from low speed storage 

device, we use a 2G fibre channel HBA to connect a self-developed high speed fibre 

channel disk array, which can reach around 110 MB/s for sequential write and 80 MB/s 

for sequential read.  

 

We use dd command as the application benchmark tool to copy data to/from iSCSI disk. 

For example, “dd write” is “dd if=/dev/zero of=/dev/sda bs=4k count=500000”. It will 

generate write request to raw device.  The size of request is set much bigger than 

initiator’s memory to avoid impact of local cache. In big I/O test, the general dd 

commands will generate SCSI commands, which request 128KB data to SCSI layer. In 

small I/O test, the kernel source code is modified to allow dd command to generate 1KB 

to 32KB requests to SCSI layer. Different queue lengths are tested for the small I/O test.      

 

4. Experimental Results and Analysis  

The iSCSI prototype with multiple connections has been tested and the results have been 

compared with the normal iSCSI performance. Figure 5 shows the throughput of iSCSI 

with RAM I/O mode .The I/O request size is 128KB. Ethernet frame size is set as 1.5k 

(small frame) or 9k (jumbo frame) respectively. The multiple connections iSCSI 

prototype can achieve 70~80MB/s for small frame test and 97~107MB/s for jumbo frame 

test, which is around 20%~60% improvement compared with normal iSCSI prototype. 

Further analysis of CPU utilization shows that utilization of initiator’s CPU can reach 

almost 100% with 107MB/s write throughput. That means CPU’s power become 

system’s bottleneck in this test condition.   

 

The impact of the frame size on the iSCSI performance is shown in Figure 6. The bigger 

frame will improve performance mainly because it decrease interrupt times. The impact is 

very small when the frame size is bigger than 3k. CPU utilization in the initiator is always 

higher than target. This is because the initiator needs to handle one more data copy in 

memory than target, when RAM I/O is employed in target.  
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The performance of multiple connection iSCSI for small I/O request is tested. Since the 

queue depth is a critical parameter that affects the iSCSI performance in small I/O, the 

effects of the queue length on iSCSI performance is summarized in Figure 7. The testing 

condition is set as request size with 1KB and frame size with 1.5kB. When queue depth 

equals to 2, I/O rate is only about 4000 IOPS. When the queue length is bigger than 8, I/O 

rate can reach around 15000 IOPS.  The results show that the I/O rate increases with the 

queue length until the queue length equals to 8. Further analyzing the captured data by 

iSCSI analyzer, we find that the maximum effective command queue length is 8 in our 

prototype and experiments.  

 

Figure 8 shows test result of DISK I/O in the lab and metro network environment. In the 

lab environment, read performance of iSCSI working in DISK I/O mode is much lower 

than that in RAM I/O mode. This is because of one more data copy to hard disk in the 

iSCSI target. For write operation, write cache of raid array card in the iSCSI target makes 

the iSCSI write performance in DISK I/O mode almost same as that in RAM I/O mode. 

 

Fig. 5 single /multiple connection of RAM I/O                Fig. 6. Effects of Ethernet frame on the throughput 
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It is commonly supposed that network latency has a big impact on the iSCSI performance 

in a metro network. Network latency is estimated by the ping command. The roundtrip 

time is around 0.6ms in metro network which is around 20 times of that in lab network. 

But the throughput of our new iSCSI prototype can still reach 67MB/s with small frame 

in the experiment, which is only 2%~5% less than that of lab. This is due to the iSCSI 

queue architecture and multiple connections design. It seems that the metro network can’t 

support jumbo frame well because it makes performance much worse than small frames. 

 

5. Conclusion  

The paper presents a new iSCSI design with multiple TCP/IP connections. The prototype 

has been developed and tested in both lab and metro network environment.  Results 

show that the new iSCSI prototype can achieve 20%~60% performance improvement 

compared with normal iSCSI architecture with single TCP/IP connection. The new iSCSI 

architecture has been proved in the metro network environment.  Future work will focus 

on the iSCSI testing and application in real network environment.  
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Abstract 

TCP layer and poor iSCSI implementations 

have been identified as the main bottlenecks in 
realizing high iSCSI performance. With the 

addition of security mechanisms the throughput 
achieved by the storage system using iSCSI is 

further reduced. Along with the above mentioned 

problems, we argue that the excessive processing 
redundancy introduced by several protocol layers 

and use of protocols designed for non-storage 

specific requirements result in poor storage 
network architectures. In order to overcome these 

issues, we introduce a new storage paradigm in 

which data is manipulated, encrypted and stored in 
fixed block sizes called quanta.  Each quanta is 

manipulated by a single effective cross layer (ECL) 

that includes security features, iSCSI 
functionalities, direct data placement techniques 

and data transport mechanisms. Further, the new 

architecture emphasizes majority of burden of 
computation for achieving security on the clients.  

Qualitative description of the idea is presented.  

Performance improvements observed during tests 
of the idea are presented. Through emulation and 

analysis we also show that the size of the quanta 
must be equal to the minimum path MTU for 

maximum throughput. 

1. Introduction 

IP has been accepted as a de-facto standard for 
Internet applications. IP based networks also 
provide relatively inexpensive and convenient 
solution [5][13] for transportation of bulk data. 
Considering these facts, transportation of storage 
data on the IP network provides a cheap and easy 
alternative to the SCSI and Fiber Channel based 
networks. iSCSI [5] is the proposed protocol for 
storage (block) data transport over IP networks. 
Most effort has been concentrated on designing the 
protocol over the existing TCP/IP protocol. Initial 
versions of the implementation of this protocol are 
available. Although the idea to develop these new 
protocols over existing protocols was done to ease 

the integration of iSCSI, it has resulted in over 
layering and crowding of protocols stacks. 

Stephen et. al [11] have presented the findings 
of implementing an iSCSI based target on a 
specialized hardware. Their work concentrated on 
comparing the overall performance of various 
network configurations using iSCSI protocol. The 
performance results from their work indicate that 
the iSCSI protocol can be severely limited by 
implementation. They suspect this problem due to 
inefficient handling of underlying network 
properties and poor iSCSI implementation. 

Y.Lu and D.Du [8] have examined different 
storage protocols (viz, iSCSI, NFS,SMB) and have 
analyzed their performance. The work shows that 
iSCSI storage with Gigabit connection could have 
performance very close to directly attached fiber 
channel-arbitrated loop storage. From their study 
they also show that iSCSI based file access 
performance outperforms the NAS schemes on both 
Windows and Linux platforms. However, they 
point out that the advantage of iSCSI reduces as the 
file size increases. The reasoning for this reduction 
in performance has not been presented in this work. 

Shuang-Yi Tang et. al [10]  have also shown 
that with addition of security features such as IPsec 
below iSCSI and TCP/IP protocol stack leads to 
high degradation in throughput. Further the idea of 
storage security is not well severed by usage of 
IPsec because it does not encrypt the data that will 
be stored on the storage device. It only protects 
from attacks between two communicating points. 
Hence, using iSCSI over TCP/IP/IPsec leads to 
high overhead and complex layering structure. 
Further, use of IPsec leads to encryption and 
decryption at both sever and client ends.  

End system copies and TCP packet reassembly 
form throughout bottlenecks for many applications 
including iSCSI [1][2][3]. End system copies can 
be eliminated by Direct Data Placement (DDP) 
where the application entities are directly placed 
into application buffers without system copies [1]. 
DDP packets have to be modified to suite the 
existing TCP functions. This is enabled by a 
Framing protocol for TCP [3]. Additional 
extensions to the DDP protocol are provided by the 
RDMA protocol, which operates over the DDP 
protocol. The RDMA, DDP and the Framing 
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protocol form the iWARP suite. This is the 
proposed solution for end system copy issues [12]. 
The iWARP suite is also applicable for iSCSI [2]. 
The iWARP suite is proposed to operate between 
iSCSI and TCP [12].   

The introduction of iWARP leads to increased 
overheads and redundancy. Two simple examples 
of redundant functions at different layers are as 
follows. First, the CRCs/checksums are computed 
at the iSCSI layer, MPA or framing layer, and the 
TCP layer. Second, sequencing information is 
repeated in both iSCSI and transport layer.   

Motivated to overcome these problems, we 
propose the use of fixed block size data units called  
quanta. These data units are chosen to be of size 
512, 1024, 2048 or 4096 bytes. A quanta is 
encrypted and formatted according to an Effective 
Cross Layer (ECL) by the client wishing to write 
data to a server and is stored as is on the storage 
device. The effective cross layer combines the 
functionalities of encryption, buffer management 
for direct data placement, iSCSI formatting and 
transport functions. The key used for encryption of 
such a quanta is stored on a separate key server. 
Any valid client can access the encrypted and 
preformatted data from the server and decrypt it 
using keys obtained from the key server. The client 
does the encryption and decryption, checksum 
calculation, and any other formatting. This lets the 
target to be implemented with fewer functionalities 
of ECL and used for only providing an access point 
to the storage device. 

 A facility called fast buffers (fbufs) was 
introduced by Peter Druschel and Larry L. Peterson 
[14]. It was an operating system facility 
implemented for I/O buffer management and data 
transfer across protection domain boundaries on 
shared memory machines. Although, the main goal 
of this idea was to provide high bandwidth to user 
level processes, this was achieved by implementing 
a new facility in the operating system. This is 
unlike the ECL and quanta approach that achieves 
the similar goal by reducing the overheads in the 
protocol stacks. Further, ECL and quanta approach 
are specifically designed to improve the 
performance of the storage networks instead for the 
general networks. 

 David D. Clark and David L. Tennenhouse [15] 
provide guidelines for designing of new generation 
of protocols. Our protocol design efforts are in line 
with two important guidelines presented in [15]. 
They are, the data manipulation costs are more 
compared to transfer control operations and the 
application data units are the natural pipelining 
units.  

 In section 2, we provide the architectural goals of 
the cross layer design. Section 3 discusses the 
encryption mechanism details. We present the ECL 
details in section 4.  Section 5 provides the test 
results for the emulation of ECL using Hyperscsi. 
Finally we present the conclusion in section 6. 

2. Cross layer architectural goals 

CLA (Cross Layer Architecture) enables the 
combining of the features of the 
SCSI/iSCSI/RDMA /DDP/Framing/TCP/IPsec into 
a single layer called the ECL. This obviates 
layering overheads and enables the ease of 
operation of Storage Area Networks. 

CLA has been designed with the following 
architectural goals: 

 
1. Minimize data handling and processing by 

dividing data units into fixed size blocks 
or quanta. 

 
2. Provide security on the wire and on the 

storage unit.  
 
3. Provide the features of the iSCSI protocol.  
 
4. Provide application level buffering by 

incorporating the features of the DDP 
protocol. (Direct Data Placement)  

 
5. Provide the transport layer mechanisms.  

3. Encryption Mechanism 

In order to include a security mechanism as a 
part of a single layer, ECL, a new security 
mechanism is proposed. The new scheme for 
storage security mainly deals with reducing the 
high overheads of authentication and encryption. 
This is done by avoiding encryption and decryption 
of data on both client and server sides. The new 
scheme does both encryption and decryption on the 
client side. The new scheme includes several 
techniques, which improves the efficiency of 
encryption and decryption: 
 

1. The data is stored in the encrypted form on 
the server: 

 
2. Encryption and Decryption is never 

performed on the server and hence there is 
no key management in the server.  
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3. In addition to encryption, the computation 
of parities, packetization, and error-
corrective information is done at the time 
the file is stored and never recomputed 
again.  

 
4. The majority of the computation load for 

providing security and error correction is 
performed at the client end.  

 
5. Authentication, key management is 

decoupled from data security. 
 

These requirements are met by implementing a 
new security mechanism. The data to be stored is 
encrypted by the client and preformatted. This data 
unit is called the Encrypted Data Unit (EDU). The 
EDU is stored on the servers as is. The EDU is 
transported to be stored on servers using ECL 
headers. The combination of EDUs and the ECL 
headers are called quanta. The keys used to encrypt 
the data are generated using AES encryption 
algorithm. The keys belonging to a particular file is 
stored in a file and encrypted. This file is stored in a 
centralized key server. A valid client can access the 
file on servers stored in the quanta form. The 
clients fetch the keys from the key server and 
perform decryption. Figure 1 shows the network 
architecture that would be used to implement the 
security mechanism. 
 Several parameters that are used for read and 
write operation, encryption, and decryption are 
included in the ECL header. This is discussed in the 
next section. 
 

 

Figure 1. System Setup for data storage centric 

network 

4. Effective Cross Layer 

A single layer satisfying the specified objectives 
is defined as the ECL. Figure 2 shows the iWARP 
stack for iSCSI along with the security layer, IPsec. 
Figure 3 shows the corresponding ECL. In the 
following paragraphs we identify several common 

features in different layers. The necessary and 
common functionalities are then retained and 
incorporated into the ECL and the rest are 
excluded. These functionalities are designed such 
that they are scalable over a WAN.  

4.1 . ISCSI functionalities of the ECL 

iSCSI is an adaptation of SCSI for accessing 
data over the Internet. Hence most of the SCSI 
functionalities that are part of iSCSI are retained in 
ECL [5]. Headers and data digests in iSCSI were 
not inherited from SCSI. These were added for 
error correction in the iSCSI protocol. Hence 
header and the data digests are excluded from the 
ECL. Instead, a single checksum for the entire 
quanta traversing the channel are utilized.  

4.2. Copy avoidance functionalities of the 

ECL 

Most of the iWARP functionalities are retained 
in the ECL. Messages framed using MPA protocol 
is obviated by defining a constant MTU in the 
SAN. Further, the quanta size is always chosen less 
than or equal to the minimum MTU. 

 

 

Fig 2. iWARP suite for iSCSI 

 

Fig  3. Effective Cross Layer 

This obviates the necessity of fragmentation and 
thus there is no need for markers. The minimum 
MTU over a path between a source and the 
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destination can be discovered, before any 
transmission occurs. 

The DDP protocol requires the tags or the 
addresses of buffers at the destination. These tags 
when available at the source enable direct data 
placement. As a consequence the quanta do not 
subject themselves to reassembly buffering and 
kernel copies. Hence they are directly placed at the 
appropriate SCSI buffers from the NIC.  

4.3. Transport functionalities of the ECL 

Sequencing [6] information is retained from the 
iSCSI headers. Thus the sequencing information at 
the TCP layer can be excluded. Congestion and 
flow control [6] algorithms are implemented in 
TCP and they are based on sliding windows [6]. 
The windows are based on sequence numbers. ECL 
has sequencing information similar to TCP. Hence 
congestion and flow control mechanisms similar to 
that of TCP can be used. 

Source and destination ports [6] identification is 
due to a requirement of socket level de-
multiplexing. Instead direct data placement 
provides buffer addressing information that can be 
used to place the data directly into application 
buffers. Thus direct data placement alleviates the 
need for source and destination port information. 

The data checksum is computed during the 
encryption process. Therefore there is a need only 
for a single quanta header checksum. Message 
length information that is a part of UDP can be 
excluded because it is also a part of the iSCSI 
functionality. 

4.4. Security considerations in ECL 

The encryption should be done only when a 
write or an update operation is done. During a read 
operation, only decryption is required. These 
operations are indicated in the iSCSI functionality. 
Hence it is not necessary to add it into the ECL 
separately. Authentication must be performed 
before every transaction. Authentication is done by 
the login mechanism. iSCSI login mechanism that 
are retained can be employed for this purpose. 

The final ECL header structure that combines 
the features mentioned above is shown in figure 4.  

5. Emulation of ECL by HYPERSCSI 

In order to evaluate the performance 
improvements with the use of ECL, tests were 
conducted using Hyperscsi [7]. Hyperscsi was used 
because it emulates a simple version of the ECL. In 

the current form, Hyperscsi is equivalent to SCSI 
packets placed directly over Ethernet that does not 
involve copies, reassembly buffering, and 
functionality redundancies of layers. 

 

 

Fig 4. ECL header for WRITE operations 

The test setup for ECL throughput 
characterization consists of two Dell Power Edge-
Linux boxes (initiator and the target) with Pentium 
866 MHz processors connected end to end through 
a Gigabit Ethernet link (82546 Dual port GBE). 
Linux Kernel 2.4.20-18.7 was used in the end 
systems. Throughput was measured using the 
bonnie++1.03 tool [16]. Tcpdump and Ethereal [17] 
was used to see the packet dumps on the end 
systems. iSCSI Reference 0.18 v10 [18] was used 
for comparison with iSCSI on TCP. 40 GB 
QUANTUM hard disks with ULTRA-160 SCSI 
bus were used at the target. Figure 5 shows the 
throughput snapshot tests indicating throughput 

improvements with the ECL.  
Several read operations were performed in three 

different scenarios. First, read operations were 
performed using only the SCSI protocol. Second 
was performed using Hyperscsi and the third 
repeated with UNH iSCSI v10. The results 
represent an arithmetic mean of 10 trials for a fixed 
MTU size of 16000. The read throughput achieved 
using Hyperscsi was close to direct access, 
whereas, the latest version of the UNH iSCSI code 
achieves only 219.6 Mb/s as opposed to 358 Mb/s 
and 363 Mb/s achieved by Hyperscsi and local disk 
access respectively. The improvement of 63% 
denotes the extent of betterment in throughput that 
can be obtained by getting rid of system copies, 
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reassembly buffering and multiplicity of 
functionalities in the iWARP stack through the 
ECL emulated by Hyperscsi. 

 

 

Fig 5. Read performance through the ECL 

 

Fig 6. Bulk read throughput results 

 We next investigate the throughput characteristics 
of the ECL for reads and writes and justify the 
quantum data lengths equal to the path MTU.  

The ECL needs to accommodate very large 
windows when it is operating over a network with 
large round trip times. The required changes are 
made to the Hyperscsi code to accommodate 
infinitely large windows. (Hyperscsi at present can 
accommodate only 32 segments in a window 
interval). 4K quanta are used for ECL. 
Fragmentation of quantum is allowed for MTU 
values less than 4K. For MTU values greater than 
4K, each quantum is contained within a single 
Ethernet packet along with the headers. 

Figure 6 compares the iSCSI throughput vs. the 
ECL throughput for reads for various possible 
MTU sizes in the Gigabit Ethernet platform. The 
read throughput shows a constant improvement of 
about 63% in the favor of ECL.  

Figure 7 compares the iSCSI throughput vs. the 
ECL throughput for writes for various possible 

MTU sizes in the Gigabit Ethernet platform. The 
write throughput is less than the read throughput for 
both the iSCSI and the ECL cases, since writes are 
more expensive than reads. For large MTU sizes, 
the ECL throughput approaches the iSCSI 
throughput since we speculate that non-TCP/IP 
overheads for large MTU values in an ECL 
environment approach the TCP/IP overheads for 
large MTU values in the TCP/IP environment. 

Figure 8 shows the read throughput variations 
for 4K quantum ECL. The throughput peaks at 
MTU values equal to the quantum-sized blocks. We 
allow for fragmentation in our tests for MTU sizes 
less than the quantum sizes. For MTU sizes greater 
than the quantum sizes, the throughput gradually 
decays since the per packet non-TCP/IP overheads 
begin to dominate. This is due to the Ethernet per 
packet processing overheads. For MTU sizes less 
than the quantum sizes, the fragmentation 
overheads exceed the Ethernet per packet 
overheads. The optimal values are thus reached for 
MTU sizes almost equal to the quantum sizes. The 
trend is also seen for writes as shown in figure 9. 

An increase in quanta size increases the 
throughput. The write throughput for 5K path MTU 
and various quanta sizes are depicted in figure 10. 

The tests conducted conclude the throughput 
characteristics of the ECL and justifies the 
Quantum size selections equal to MTU sizes. 

6. Conclusions 

 Existing iSCSI storage systems exhibit low 
performance. Additional protocols have been 
proposed for improving the performance.  We 
presented the argument that this would lead to 
further decrease in performance. This is due to 
excessive processing redundancy and several 
protocol layers. Further, use of protocols designed 
for non-storage specific requirements result in poor 
storage network architectures. In order to solve 
these problems we proposed data handling in the 
form of fixed data units called quanta. A new 
Effective Cross Layer was proposed that combines 
the necessary features of security, iSCSI, direct data 
placement, and TCP. A new security mechanism is 
proposed that emphasizes burden of computation 
on clients. Throughput improvements over the 
existing iSCSI are indicated by using the Hyperscsi 
protocol for emulation. The characteristics of the 
ECL throughput are noted. 

 
 

Mb/s 

363  358 

219.6 
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Fig 7. Bulk write throughput results 

 

Fig 8. ECL bulk read throughput results 
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Abstract

RAID5 performance is critical while rebuild is in
progress, since in addition to the increased load to
recreate lost data on demand, there is interference
caused by rebuild requests. We report on simulation
results, which show that processing user requests at
a higher, rather than the same priority as rebuild
requests, results in a lower response time for user re-
quests, as well as reduced rebuild time. Several other
parameters related to rebuild processing are also ex-
plored.

1 Introduction

RAID5 with rotated parity is a popular design, which
tolerates single disk failure and balances disk loads
via striping. Striping allocates successive segments
of files called stripe units on the N − 1 disks in an
array of N disks, with one stripe unit dedicated to
parity, so that a capacity equal to the capacity of
one disk is dedicated to parity. In this case the parity
group size G is equal to N . The parity blocks are kept
up-to-date as data is updated and this is especially
costly when small randomly placed data blocks are
updated, hence the small write penalty.

If a single disk fails, a block of data on that disk
is recreated by exclusive-ORing (XORing) the corre-
sponding blocks on the N − 1 surviving disks. Each
surviving disks needs to process the load due to fork-
join requests to recreate lost data blocks besides its
own load, so that the load on surviving disks is in-
creased, e.g., at worst doubled when all requests are
reads. Clustered RAID solves this problem by se-
lecting a parity group size G < N , so that the
load increase is proportional to the declustering ra-
tio: (G − 1)/(N − 1) [3]. Balanced Incomplete Block
Designs – BIBD [1, 4] and random permutation lay-

∗The first three authors are partially supported by NSF
through Grant 0105485 in Computer Systems Architecture.

†Hitachi Global Storage Technologies, San Jose Research
Center, San Jose, CA.

out [2] are two approaches to balance disk loads from
the viewpoint of parity updates.

The rebuild process is a systematic reconstruction
of the contents of the failed disk, which is started
immediately after a disk fails, provided a hot spare
is available. Of interest is the time to complete the
rebuild Trebuild(u) and the response time of user re-
quests versus time: R(t), 0 < t < Trebuild(u). The
utilization at all disks, which is equal to u before
disk failure occurs, is specified explicitly, since it has
a first order effect on rebuild time.

A distinction is made between stripe-oriented or
rebuild-unit(RU)-oriented and disk-oriented rebuild
in [1]. In the former case the reconstruction pro-
ceeds one RU at a time, so that the reconstruction
of the next RU is started after the previous one
is reconstructed and even written to disk. Disk-
oriented rebuild reads RUs from all surviving disks
asynchronously, so that the number of RUs read from
surviving disks and held in a buffer in the disk ar-
ray controller can vary. It is shown in [1] that disk-
oriented rebuild outperforms stripe-oriented rebuild,
therefore the stripe-oriented rebuild policy will not
be considered further in this study.

Rebuild requests can be processed at the same pri-
ority as user requests, which is the case with the per-
manent customer model – PCM [2], while [1, 6] pro-
cess rebuild requests when the disk is idle according
to the well-known vacationing server model – VSM in
queueing theory: an idle server (resp. disk) takes suc-
cessive vacations (resp. reads successive RUs), but re-
turns from vacation (resp. stops reading RUs) when
a user request arrives at the disk. In effect rebuild
requests are processed at a lower priority than user
requests. In PCM a new RU is introduced at the tail
of the request queue, as soon as the processing of the
previous RU is completed, and hence the name of the
model.

The few studies dealing with rebuild processing
[1, 2, 6] leave several questions unanswered, such
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as the relative performance of VSM versus PCM,
the effect of disk zoning, etc., but not all issues
are addressed here due to space limitations. We
extended our RAID5 simulator to simulate rebuild
processing. This simulator utilizes a detailed sim-
ulator of single disks, which can handle different
disk drives whose characteristics are available at:
http://www.pdl.cmu.edu/Dixtrac/index.html. The
reason for adopting simulation rather than an ana-
lytic solution method is because of the approxima-
tions required for analysis, which would have required
validation by simulation anyway. Simulation results
are given in the next section, which is followed by
conclusions.

2 Experimental Results

The parameters of the simulation are as follows. We
utilize IBM 18ES 9 GByte, 7200 RPM disk drives.
We assume an OLTP workload generating requests
to small (4KB) randomly placed blocks over the data
blocks of the N = 19 disks in the array. Track align-
ment ensures that all 4 KB accesses are carried out
efficiently, since they will not span track boundaries.
Accesses to randomly placed disk blocks introduce a
high overhead, i.e., 11.54 ms per request with FCFS
scheduling, less than 1% of which is data transfer
time. We assume that the ratio of reads to writes
is R:W=1:0, since reads introduce a heavier perfor-
mance degradation upon disk failure. While we ex-
perimented with different disk utilizations, only re-
sults for u = 0.45, which results in a 90% disk uti-
lization are reported here. We assume zero-latency
read and write capability, which has a significant im-
pact on rebuild time.

The parameter space to be investigated includes:
(i) VSM versus PCM. (ii) The impact of buffer size
per disk B specified as number of tracks. (iii) the
size of the RU (rebuild unit) is a multiple of tracks
and RU = 1 is the default value. (iv) the effect of
preempting rebuild requests. (v) The effect of pig-
gybacking, also considered in [1]. (vi) The effect of
read-redirection and controlling the fraction of reads
redirected. In fact due to its beneficial effect read-
redirection is postulated in all other cases reported
here [1, 5]. (vii) The effect of the number of disks on
rebuild time. (viii) A first order approximation for
rebuild time. Due to space limitations item (iv) is
not investigated.

2.1 VSM versus PCM

The response time of user requests R(t) and the com-
pletion percentage c(t), which is the fraction of tracks

Figure 1: Performance Comparison of VSM and PCM

already rebuilt, versus time (t) for both VSM and
PCM are shown in Figure 1. A disk failed and rebuild
was started at time t = 135 sec. The graphs shown
are averages over ten runs, but even more runs are
required to obtain a tighter confidence interval, say
at 95% confidence level. The following observations
can be made:

(i) Disk utilizations are effectivy 100% utilized in
both cases, but since RU reads are processed at a
lower (nonpreemptive) priority in VSM user requests
are only affected by the mean residual service time
for RU reads, which is close to half a disk rotation at
lower disk utilzations. PCM yields a higher R(t) than
VSM since it reads RUs at the same priority as user
requests. For each n̄ user requests processed (on the
average) by a disk, the disk processes m̄ consecutive
rebuild requests, so that the arrival rate is increased
by a factor of 1 + m̄/n̄. Furthermore, rebuild re-
quests, in spite of zero latency reads, have a longer
service time than user requests. (ii) The rebuild time
in PCM is higher because during the rebuild period,
the disk utilizations due to user requests is approx-
imately the same, but the disk “idleness” is utilized
more efficiently by VSM than PCM. The reading of
consecutive RUs is started in VSM only when the disk
is idle, so that if the reading of an RU is completed
before a user request arrives, the reading of the next
RU can be carried out without incurring seek time.
Uninterrupted processing of rebuild requests is less
likely with PCM, since by the time the request to read
an RU is being served, it is not likely that the disk
queue is empty. This intuition can be ascertained by
comparing the mean number of consecutive RU reads
in the two cases.

2.2 The impact of buffer size

Figures 2 and 3 show R(t) and Trebuild versus buffer
size for VSM and PCM, respectively. We can re-
duce buffer space requirements by XORing the avail-
able blocks right away, but this would introduce con-
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Figure 2: The impact of buffer size in VSM

Figure 3: The impact of buffer size in PCM

straints on hardware requirements. Two observations
can be made: (i) With disk-oriented rebuild a larger
buffer size leads to shorter rebuild times in both VSM
and PCM. This is because due to temporary load im-
balance, rebuild processing with disk-oriented rebuild
is suspended when the buffer is filled. A shared or
semi-shared buffer requires further investigation. (ii)
The impact of buffer size on R(t) for VSM is very
small, but it is significant in PCM. In VSM, the re-
build requests are processed at a lower priority, so the
R(t) is only affected by the time to read an RU. In
PCM a small buffer size limits the rate of RU reads,
i.e., no new RU reads are inserted into the disk queue
when the buffer is full, but as B is increased, RU reads
are introduced at a rate determined only by u.

2.3 The impact of rebuild unit size

Figures 4 and 5 shows R(t) and Trebuild versus the
RU size = 1, . . . 16 tracks. The following observa-
tions can be made: (i) The larger RU size leads to
higher response times in VSM and PCM. In VSM
the mean residual time to read an RU is added to the
mean waiting time caused by the contention among
user requests [6].(ii) Larger RU sizes lead to shorter
rebuild times in VSM and PCM, because the rebuild
time per RU is reduced, since the cost of one seek is
prorated over the reading of multiple RUs.

Figure 4: The impact of rebuild unit size in VSM

Figure 5: The impact of rebuild unit size in PCM

2.4 The effect of piggybacking

Figure 6: The effect of piggybacking

Figure 6 shows R(t) and c(t) versus t in VSM with
and without piggybacking. Piggybacking is done at
the RU level, rather than at the level of user accesses,
e.g., 4 KB blocks, which has been shown to be ineffec-
tual [1]. In other words, we extend the reconstruction
of a single block into a full track. Piggybacking short-
ens rebuild time, but initially the disk utilization will
exceed 2u in our case, since track reads have a higher
mean service time than the reading of 4 KB blocks,
which are carried out on behalf of fork-join requests
(this is the reason why u = 0.4 in this case). We can
control the initial increase in R(t) by controlling the
fraction of piggybacked user requests.
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Figure 7: The effect of disk utilization on rebuild time

2.5 The impact of read redirection

Read-redirection shortens the rebuild time (by a fac-
tor of three with 19 disks, u=0.45, and B=64) and
also reduces R(t) as gradually more tracks from the
failed disk are rebuilt. Since we assumed there are no
write requests, we get the maximum improvement in
performance with read redirection, but there will be
less improvement in response time when all requests
are updates. In “unclustered” RAID5 the utilization
of the spare disk remains below the other disks and
there is no need to control the fraction of read re-
quests being redirected, as in [3].

2.6 The effect of the number of the disks

Table 1 gives the rebuild time using VSM versus the
number of disks (N) with various number of buffers.
The disk utilization is u = 0.45. It is observed that
even at high disk utilization, rebuild time with VSM
is not affected very much by N . An additional obser-
vation is that due to the prevailing symmetry, that
the load at all disks is balanced, rebuild time is deter-
mined by the reading time of any of the disks and that
the writing of the spare disk follows shortly there-
after. When the buffer size dedicated to the rebuild
process is small, rebuild time is more sensitive to N .

Number of disks 9 19 29 39

Rebuild
Time
(sec)

B=16384 1604.2 1622.8 1631.9 1632.0

B=64 2586.3 2618.9 2701.4 2704.5

B=16 3033.8 3246.0 3434.7 3526.5

Table 1: The effect of number of disks on rebuild time

2.7 The effect of disk utilization on rebuild time

It follows from Figure 7 that rebuild time increases
sharply with disk utilization. This is especially so
with an infinite source model, where the request ar-
rival rate is not affected by increased disk response
time. Rebuild time can be reduced by not processing

low priority applications.

We obtain a first order approximation for rebuild
time with given disk characteristics by postulating
that the rebuild time Trebuild(u) is simply a func-
tion of the disk utilization u, so that Trebuild(u) =
Trebuild(0)/(1 − αu), αu < 1, where Trebuild(0) is the
time to read an idle disk, and α is a measure of the
average increase in disk utilization during rebuild.

With read redirection and R:W=1:0 the utilization
of surviving disks initially doubles, but then it drops
gradually as disk utilization reaches u, so that α ≈ 1.5
is an initial guess. On the other hand the rebuild
time is slow when rebuild starts, so that more time
is spent in the initial stages of rebuild. Curve fitting
shows that α ≈ 1.75 yields an acceptable estimate of
rebuild time, but there is a sensitivity to R:W ratio,
and other factors, which are being explored.

3 Conclusions

It is interesting to note that VSM outperforms PCM
on both counts, user response times and rebuild time.
The latter is counterintuitive since PCM rebuilds
more aggressively. We are also investigating the ef-
fect of preempting rebuild requests, utilizing multiple
rebuild regions, and allowing multiple user requests
before rebuild processing in VSM is stopped. Finally,
we are interested in rebuild processing in RAID6 and
EVENODD, especially when operating with two disk
failures.
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Abstract
The ever-increasing volume of archival data that need
to be retained for long periods of time has motivated
the design of low-cost, high-efficiency storage sys-
tems. Inter-file compression has been proposed as a
technique to improve storage efficiency by exploit-
ing the high degree of similarity among archival data.
We evaluate the two main inter-file compression tech-
niques, data chunking and delta encoding, and com-
pare them with traditional intra-file compression. We
report on experimental results from a range of repre-
sentative archival data sets.

1 Introduction
Over the last several years, we have witnessed an un-
precedented growth of the volume of stored digital
data. A recent study estimated the amount of origi-
nal digital data generated in 2002 alone to be close to
5 exabytes, approximately double the volume of data
created in 1999 [4]. An increasing fraction of this
corpus is archival data: immutable data retained for
long periods of time for legal or archival purposes.
Examples of archival data include rich media such as
audio, images and video, documents, email, and in-
stant messages.

The high rate of archival data generation has mo-
tivated a number of research projects to look into

ways of improving the space efficiency of disk-based
archival storage systems. Researchers have observed
that they can take advantage of content overlapping,
which is common in archival data, to improve stor-
age efficiency [9, 3]. There are two main techniques
proposed for this purpose. The first technique divides
each data object into a number of non-overlapping
chunks and stores only unique chunks in the archival
storage system. Chunks may be of fixed or variable
size. The second technique is based on resemblance
detection between data objects and uses delta encod-
ing to store only deltas instead of entire data objects.

These two approaches have been developed and used
in very different contexts, with different goals and
data sets. For example, variable-size chunking was
proposed for improving the bandwidth consumption
of network file systems [7]. Delta encoding [1] has
been used for data compression in HTTP [6] as well
as in version-control systems [11]. However, there
has been no attempt to compare the two approaches
side-by-side, evaluating the storage efficiency they
achieve and their applicability to different archival
data sets.

The goals of this work can be summarized as fol-
lows: (i) evaluate the applicability of the approaches
on different data types that exhibit different degrees
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of inter-file similarities; (ii) identify the key param-
eters for each technique and provide rules of thumb
for their settings for different data types; (iii) com-
pare inter-file compression techniques with tradi-
tional lossless intra-file techniques and explore the
potential benefits of hybrid approaches. Further, we
provide a performance analysis of the different ap-
proaches, and discuss system design and engineering
considerations.

2 Overview
Archival data, by its nature, often exhibits strong
inter-file resemblance. This paper examines tech-
niques that take advantage of such inter-file resem-
blance to avoid storing redundant data and thus im-
prove storage efficiency. Such techniques may be
combined, if necessary, with lossless intra-file com-
pression, such as sliding-window compression tech-
niques (e.g. zip variants).

Several systems that exploit data redundancy at dif-
ferent levels of granularity have been developed in
order to improve storage efficiency. One class of sys-
tems detects redundant chunks of data at granulari-
ties that range from entire file (EMC’s Centera) down
to individual fixed-size disk blocks (Venti [9]) and
variable-size data chunks (LBFS [7]). We focus on
the use of variable-sized chunks, which have been
reported to exhibit better efficiency over the special
case of fixed-size blocks [8]. Typically, such tech-
niques are used in content-addressable storage (CAS)
infrastructures. The second class of systems detects
and stores only differences (deltas) between similar
files, at the granularity of bytes [3].

2.1 Chunking
Data chunking involves two problems. First, a data
stream, such as a file, needs to be divided into chunks
in a deterministic way. We consider the general case
of variable-sized chunks, which works for any type of
data, including binary formats. Chunk boundaries are
defined by calculating some feature (a digital signa-
ture) over a sliding window of fixed size. In our pro-
totype, we use Rabin fingerprints [10], for their com-
putational efficiency in the above scenario. Bound-
aries are set where the value of the feature meets cer-
tain criteria, such as when the value, modulo some
specified integer divisor, is zero; the divisor affects
the average chunk size. Such deterministic algo-
rithms do not require any knowledge of other files
in the system. Moreover, chunking can be performed
in a decentralized fashion, even on the clients of the
system.

The second problem is to uniquely identify chunks.
An algorithm is required that computes a digest over
a variable-length block of data. Currently in the pro-
totype, we reuse the Rabin fingerprinting code for de-
riving chunk identifiers. In practice and for very large
data sets, one would need an algorithm that guaran-
tees low probability for collisions, such as MD5 and
SHA variants. Exactly because chunks are content-
addressable, chunking is suitable for CAS systems.
Only unique chunks are stored for any file. The origi-
nal files can be reconstructed from their constituent
chunks. To do that, the system needs to maintain
metadata that maps file identifiers to a list of chunk
identifiers. Any evaluation of storage efficiency must
take into account the overhead due to the metadata.
Figure 1 illustrates the main parameters of a chunk-
ing technique.

 sliding window
window size

chunk size

chunk end/start
Rabin fingerprint size chunk ID size

Figure 1: Chunking parameters

We developed a prototype program, named chc, to
evaluate the efficiency and performance characteris-
tics of chunking without having to build a complete
storage system. The input to chc is an archive (tar
file) of a number of files that form the target data set;
chc produces an output archive that includes unique
chunks derived from the original files. Optionally, we
can compress the individual chunks in the archive us-
ing the zlib compression library. chc captures a list of
chunk identifiers for each file, as well as the identifier
and size for each chunk. This metadata is stored also
in the output archive and provides an estimate of stor-
age overhead due to chunking. In addition, chc can
reconstruct the original data set from the final chunk
archive.

2.2 Delta encoding
Delta compression is used to compute a delta encod-
ing between a new file and a reference file already
stored in the system. When resemblance is above
some threshold, a delta is calculated and only that is
stored in the system. There are three key problems
that need to be addressed in delta encoding.

First, resemblance has to be detected in a content-
independent and efficient way. We use the shingling
technique proposed by the DERD project [3]. It cal-
culates Rabin fingerprints using a sliding window
along an entire file (the window size is a configurable
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parameter). The number of fingerprints produced is
proportional to the file size. A deterministic feature
selection algorithm selects a subset of those finger-
prints, called a sketch, which is retained and later
used to compute an estimate of the resemblance be-
tween two files by comparing two sketches using the
approximate min-wise independent permutations [2].
This estimate computes similarity between two files
by counting the number of matching pairs of features
between two sketches. It has been shown that even
small sketches, e.g. sets of 20 features, capture suffi-
cient degrees of resemblance.

Thus, when new data needs to be stored, one has
to find an appropriate reference file in the system:
a file exhibiting a high degree of resemblance with
the new data. In general, this is a computationally
intensive task (especially given the expected size of
archival data repositories). In the prototype, we use
an exhaustive search over all stored files. We are cur-
rently investigating the use of hierarchical clustering
of sketches to reduce the search.

The third problem is to calculate the delta encoding
once a reference file has been found. Delta compres-
sion is a well-explored area, and in the prototype we
used the xdelta tool [5], which computes the output
using the zlib (gzip) library. Pointers to reference files
are stored with every delta. These identifiers (e.g.
SHA digests), along with sketch data, contribute to
accounted storage overhead. Our prototype consists
of three programs, one for each of the three above
problems: feature extraction, resemblance detection,
and delta generation.

3 Evaluation
We explain the experimental methodology we used
to measure the efficiency, describe the data sets, and
analyze the storage efficiency and differences in per-
formance of the two archival storage techniques.

As noted above, storage efficiency is the determining
factor for the applicability of an inter-file compres-
sion approach. We report on the storage space re-
quired as a percentage of the original, uncompressed
data set size. For example, stored data that is 20%
the size of the original represents an efficiency ratio
of 5:1. The functionality and performance of each
approach depends on the settings of a number of pa-
rameters. As expected, experimental results indicate
that no single parameter setting provides optimal re-
sults for all data sets. Thus, we first report on param-
eter tuning for each approach and different data sets.
Then, using optimal parameters for each data set, we

compare the overall storage efficiency achieved by
each approach. The required storage includes the
overhead due to the metadata that needs to be stored.
Last, we discuss the performance cost and the design
issues of applying the two techniques to an archival
storage system.

3.1 Data Sets
We chose a range of data sets that we believe to
be representative of archival data. Email messages
often contain headers (and sometimes attachments)
that show great resemblance. Source code and web
content are typically versioned. Non-textual content
such as presentations and imagery are often similar
and require lots of storage space. Finally, computer-
generated data such as logs are generated in high vol-
umes and can contain repeated content such as field
descriptors. The following is the list of data sets we
use.

• HP Support Unix logs (two sets of different total
volume)

• Linux kernel 2.2 source code (four versions)
• Email (single user)
• Mailing list archive (BLU)
• HP ITRC Support web site
• Microsoft PowerPoint presentations
• Digital raster graphics (California DRG 37122

7.5 minute untrimmed TIFF)

3.2 Parameter Tuning
In the case of chunking, the expected chunk size is
a key configuration parameter. It is implicitly set by
setting the fingerprint divisor as well as the minimum
and maximum allowed chunk size. In general, the
smaller it is, the higher the probability of detecting
common chunks among files. For data with very high
inter-file similarity (such as log files), small chunk
sizes result in greater storage efficiency. However, for
most data this is not the case, because smaller chunks
also mean higher metadata overhead. Often, because
of this overhead the storage space required may be
greater than the size of the original corpus. As Fig-
ure 2 shows, the optimal expected chunk size depends
on the type of data; using 128-bit identifiers, the best
efficiencies range from 256 to 512 bytes.

The main configurable parameter in the case of delta
encoding is the size of the sketches—i.e. the num-
ber of features used for resemblance detection. Our
experimental results are consistent with what was re-
ported by Douglis et al.: a sketch size of 20 to 30 fea-
tures is sufficient to capture resemblance among files.
Another parameter is the resemblance threshold, the
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Figure 2: Chunking efficiency by divisor size

number of features that must correspond between two
files to consider that sufficient resemblance exists to
justify calculating the delta instead of storing the en-
tire new file. For the evaluation of delta encoding,
we traverse the target data set one file at a time in
a random order. For a file, a delta is created against
the file with the highest resemblance that is already in
the output archive, as long the resemblance is above
a threshold of one corresponding feature. Otherwise,
the entire file is stored as a new reference file.

3.3 Storage Efficiency
Table 1 shows the achieved storage efficiency by the
two approaches. We do that with and without addi-
tional zlib compression of chunks and deltas respec-
tively. To establish a baseline for each data set, we
create a single tar file from the data set, and then
compress it with an intra-file compression program,
gzip. As expected (and as shown by the two first
rows of the table), inter-file compression improves
with larger corpus sizes. This is not the case with
gzip.

The HP Unix Logs (8,000 files) show very high simi-
larity. Chunk-based compression on this similar data
was reduced to 11% of the original data size, and
when each chunk is compressed using the zlib (simi-
lar to gzip) compression, it is just 7.7% of the original
size. Even more impressive are the reductions in size
when using delta compression. When delta compres-
sion is used alone, the data set is reduced to 4% of
the original size, but when combined with zlib com-
pression, the compressed data is less than 1% of the
original size.

Textual content, such as web pages, can be highly
similar. However, in the case of the HP ITRC con-
tent, gzip compression is more efficient than chunk-
ing or delta. More surprisingly, gzip is better even
when we do additional compression of chunks and

deltas. The reason is that gzip’s dictionary is more ef-
ficient across entire files than within the smaller indi-
vidual chunks, and chunk IDs appear as random (es-
sentially non-compressible) data. But in the context
of an archival storage system, gzip’s advantage is not
likely to be as effective in practice; this is discussed
below.

Non-textual data, such as the PowerPoint files with
chunking and delta (especially with gzip) achieve bet-
ter efficiency than gzip alone. However, the achieved
compression rates are less impressive than those for
the log data. For raster graphics, delta encoding with
gzip achieves modest improvement over gzip alone.

A single user’s email directory and a mailing list
archive show little improvement when using delta.
Chunking is less effective than gzip, although we
would expect it to reduce redundancy found across
multiple users’ data.

In most cases, inter-file compression outperforms
intra-file compression, especially when individual
chunks and deltas are internally compressed. Chunk-
ing achieves impressive efficiency for large volumes
of very similar data. On the other hand, delta en-
coding seems better for less similar data. We be-
lieve that this is due to the lower storage overhead
required for delta metadata. Typical sketch sizes of
80 to 120 bytes (20 to 30 features × 4 bytes) for a file
of any size are significantly smaller than the overhead
of chunk-based storage, which is linear with the size
of the file.

Although compressing a set of files into a single gzip
file to establish a baseline measurement helps illus-
trate how much redundancy might exist within a data
set, it is not likely that an archival storage system
would reach those levels of efficiency for several rea-
sons. Most important is that files would be added
to an archival system over time and files would be
retrieved individually. If a new file were added to
the archival store, it would not be stored as efficiently
unless the file could be incorporated into an existing
compressed file collection, i.e. the new file would
need to be added to an existing tar/gzip file. Like-
wise, retrieving a file would require first extracting it
from a compressed collection and this would require
additional time and resources over a chunk or delta-
based file retrieval method.

Our experiments measured the size of an entire cor-
pus, in the form of a tar file after it has been com-
pressed with gzip. Had we compressed each file with
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Data Set Size # Files tar +
gzip

Chunk Chunk
+ zlib

Delta Delta +
zlib

HP Unix Logs 824 MB 500 15% 13% 5.0% 3.0% 1.0%
HP Unix Logs 13,664 MB 8,000 14% 11% 7.7% 4.0% 0.94%
Linux 2.2 source (4 vers.) 255 MB 20,400 23% 57% 22% 44% 24%
Email (single user) 549 MB 544 52% 98% 62% 84% 50%
Mailing List (BLU) 45 MB 46 22% 98% 53% 67% 21%
HP ITRC Web Pages 71 MB 4,751 16% 86% 33% 50% 26%
PowerPoint 14 MB 19 67% 55% 46% 38% 31%
Digital raster graphics 430 MB 83 42% 102% 55% 99% 42%

Table 1: Storage efficiency comparison (64-bit chunk IDs)

gzip first and then computed the aggregate size of
all compressed files, the sizes for gzip-compressed
files would have been much larger. For example, in
the case of the HP ITRC web pages, gzip efficiency
would have been 30% of the original size, much
larger than the 16% shown in table 1, and larger than
the 26% that can be achieved by using delta compres-
sion with zlib. When delta compression (or to a lesser
extent, chunking) is applied across files first and then
an intra-file compression method second, it is more
effective than compressing large collections of data
because additional redundancy can be eliminated.

3.4 Performance
In practice, space efficiency is not the only factor
used to choose a compression technique; we briefly
discuss some important systems issues such as com-
putation and I/O performance.

The chunking approach requires less computation
than delta encoding. It requires two hashing opera-
tions per byte in the input file: one fingerprint calcu-
lation and one digest calculation. In contrast, delta
encoding requires s + 1 fingerprint calculations per
byte, where s is the sketch size. It also requires cal-
culating the deltas, even though this can be performed
efficiently, in linear time with respect to the size of the
inputs. Additional issues with delta encoding include
efficient file reconstruction and resemblance detec-
tion in large repositories.

The two techniques exhibit different I/O patterns.
Chunks can be stored on the basis of their identifiers
using a (potentially distributed) hash table. There
is no need for maintaining placement metadata and
hashing may work well in distributed environments.
However, reconstructing files may involve random
I/O. In contrast, delta-encoded objects are whole ref-
erence files or smaller delta files, which can be stored
and accessed efficiently in a sequential manner. But,
placement in a distributed infrastructure is more in-
volved.

4 Conclusions
Inter-file compression is emerging as a technique to
improve space efficiency in archival storage systems.
This paper provides the first direct comparison of
the two main techniques proposed in the literature,
namely chunking and delta encoding, and compares
them against traditional intra-file compression. In
general, both chunking and delta encoding outper-
form gzip, especially when they are combined with
compression of individual chunks and deltas. Chunk-
ing is computationally cheap and can be easily used
in distributed systems. It works well for data with
very high similarity. Thus, it is applicable to appli-
cations where there are multiple versions of the same
data, such as version control systems, and log files.
On the other hand, delta encoding is more computa-
tionally expensive, but more efficient with less simi-
lar data and thus, it is potentially applicable to a wider
range of data sets.
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Abstract

iSCSI is an emerging transport protocol for transmitting
SCSI storage I/O commands and data blocks over TCP/IP
networks. It allows storage devices to be shared by multi-
ple network hosts. A fundamental problem is how to enable
consistent and efficient data sharing in iSCSI-based envi-
ronments. In this paper, we propose a suite of data sharing
schemes for iSCSI-based file systems and use ext2 as an ex-
ample for implementation. Finally, we use simulations to
verify the correctness of our designs and to study the per-
formances.

1. Introduction

iSCSI [2] combines two popular and mature protocols
in the data storage area and the network communication
area - SCSI and TCP/IP. Small Computer System Interface
(SCSI) enables host computer systems to perform I/O op-
erations of data blocks with peripheral devices. iSCSI ex-
tends the connection of SCSI from traditional parallel ca-
bles, which could only stretch to several meters, to ubiqui-
tous TCP/IP networks. iSCSI encapsulates and reliably de-
livers SCSI Protocol Data Units (PDUs) over TCP/IP net-
works.

iSCSI is expected to expand the coverage of System
Area Networks (SAN). One major feature of SAN is to pro-
vide a shared pool of storage resources for multiple access-
ing hosts. As storage devices are not directly attached to
any hosts, they can be easily shared. However, data sharing
is going beyond sharing storage devices. With data shar-
ing, a single piece of data could actually be shared by mul-
tiple clients. The integrity of data content has to be en-
forced. Therefore, concurrency control mechanism is nec-
essary when multiple hosts could read/write a single piece
of data concurrently.

This project is partially supported by members of DTC Intelligent
Storage Consortium (DISC) at UMN, and gifts from Intel and Cisco.

iSCSI Disk Array

iSCSI Tape Subsystem

File Server

Database Server

Database Server

File Server

IP Network

Figure 1. iSCSI network architecture scenario

When using iSCSI-based storage subsystems, applica-
tion servers (as initiators) and their shared storage subsys-
tems (as targets) could be connected by TCP/IP networks
over long distances as depicted in Figure 1. Applications
like file systems on the application servers are not aware
of the fact that iSCSI-based storage subsystems are ac-
cessed and these storage subsystems are potentially shared
with other application servers. Remote iSCSI devices are
mounted at mounting points of application servers’ lo-
cal file systems and corresponding file system modules
are loaded to manage data blocks. The file systems for
mounted iSCSI devices are not adapted for iSCSI at all.
Although these mounted file system modules in IP hosts
are able to use their existing file system locks locally, mul-
tiple IP hosts still can not guarantee consistent data sharing.
Therefore, our design is to coordinate the accesses of mul-
tiple iSCSI initiators.

Since iSCSI-based architectures could be deployed over
WANs, latency introduced by large physical distance will
be a severe restriction on performance. To improve per-
formance, caching at application servers is necessary. In
addition to hiding physical latency, caching at application
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servers can also reduce load at iSCSI targets. However,
it incurs the problem of cache consistency, which is the
consistency between cached data on initiators (application
servers) and data on targets (iSCSI-based storage subsys-
tems). In our design, we will enforce strong consistency on
cached data by using a callback cache similar to the Coda
file system [6]. An iSCSI target keeps track of cached phys-
ical blocks on all connected iSCSI initiators. The iSCSI
target forces the iSCSI initiators to discard their stale copy,
when it is going to modify a physical block.

Metadata are also concurrently accessed, and cached by
multiple initiators. However, a general solution for both
metadata and normal file data would be inefficient since
metadata and normal file data are different in terms of ac-
cess patterns. We design different mechanisms for them
separately as discussed in Section 3.1 and Section 3.2.

Finally, most existing SAN file systems, such as Lus-
tre, only provide UNIX file sharing semantics. However,
the UNIX file sharing semantics is not suitable for transac-
tional execution of a sequence of operations. In the trans-
action file sharing semantics, there should be a consistent
view of any involved data throughout the execution of a
transaction. Deadlocks are possible, so detection and res-
olution of deadlocks are considered. In addition, rollback
capability is required in case a transaction is unable to com-
plete due to deadlocks.

The rest of this paper is organized as following. In Sec-
tion 2, we will summarize related work. In Section 3, we
are going to give an overview of our design and implemen-
tation. In Section 4, we present the simulation results over
ns-2 simulator to study the performance of our design.

2. Related Work

The performance of iSCSI-based storage subsystems is
studied by Lu and Du in [3]. It is shown that iSCSI storage
with Gigabit connection could have performance very close
to directly attached FC-AL storage, and iSCSI storage in
campus network can achieve reasonable performance re-
stricted by available bandwidth. Tang et al [5] have study
performance of software-based iSCSI security using IPSec
and SSL. In application side, researchers start to consider
using iSCSI to implement hierarchical web proxy server
and remote mirroring and backup.

Several distributed or clustered file systems have de-
signed different data sharing schemes. GFS uses Device
Lock mechanisms, which has been included in SCSI 3
specification as Dlock command. The IBM Distributed
Lock Manager (DLM) is an implementation of the classic
VAX Cluster locking semantics. Another simpler imple-
mentation is the DLM in Lustre with introduction of object
concept. Our work is mainly different from these designs in
network environment and locking granularity. We explic-

Table 1. Compatibility of metadata locks
M S M X

M S +
M X + +

itly take possible long network latency into design consid-
eration. Our locking granularity is at physical block level.

3. Design Overview

Our proposed scheme for data sharing in iSCSI-based
file systems consists of two major parts. The first part is
a concurrency control mechanism to coordinate multiple
concurrent accesses for shared data. The second part is
a cache consistency control mechanism. We assume that
no single operation will involve data from more than one
iSCSI target/LUN.

Roselli et al [1] found that the percentage of metadata
reads is much larger than metadata writes. In order to take
advantage of this fact, our design allows iSCSI initiators to
cache shared locks (referred to as semi-preemptible shared
locks [4]) on metadata objects.

On the other hand, normal data are organized into files.
The access patterns for files are application dependent.
Therefore, in addition to integrity of shared data, we are
trying to design a general locking scheme to achieve high
concurrency and to reduce maintenance costs of locks. Un-
fortunately, these two goals are conflicting with each other.
Fine granularity of locks are preferred to maximize con-
currency, meanwhile coarse granularity reduces number of
locking requests and memory space used to maintain locks.
Our design is trying to balance between these two conflict-
ing goals. The detail of our hierarchical locking scheme
will be discussed later in Section 3.2.

3.1. Locking scheme for metadata

The locks for metadata are applied on metadata objects.
We define following 5 kinds of metadata objects: 1) direc-
tory files, 2) normal file inodes, 3) super block, 4) inode
bitmap blocks, and 5) data-block bitmap blocks.

For each metadata object, there are two possible kinds of
locks: M S and M X . M S lock gives shared access to the
requested metadata object. M X lock gives exclusive ac-
cess to the requested object. The compatibility of the locks
is shown in Table 1, where ’+’ indicates incompatibility.

The M S lock is semi-preemptible. An initiator is al-
lowed to hold an M S lock until the lock manager asks it
to release that M S lock. A callback mechanism is used
to force the holder to release the lock, when some initiator
requests M X on the same metadata object. The holding
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Table 2. Compatibility of hierarchical locks
D S D X D IS D IX

D S + +
D X + + + +
D IS +
D IX + +

initiator only comply the request when it has no conflicting
usage of the object.

An M X lock for a metadata object is requested by an
initiator when it is going to modify the metadata object.
The M X locks will not be cached at the initiators, so ini-
tiators have to contact targets every time. An M X lock is
always released immediately after the involved operations
have finished.

Another possible operation on an M S lock is to upgrade
it to a M X lock. This happens when an metadata object is
first read and cached locally, and later a write request for
the same metadata object arrives at the same initiator.

3.2. Locking scheme for normal data

Normal data are organized into files. In order to balance
between high concurrency and high resource consumption,
we design a two level hierarchical locking scheme. The
upper level is an entire file and the lower level contains fix-
sized block groups.

There are 4 possible locks applicable to nodes of such
hierarchy.

D IS: intention shared access; allowing explicitly
locking on descendant nodes in D S or D IS mode;
no implicit locking to the sub-tree.

D IX : intention exclusive access; allowing explicitly
locking on descendent nodes in D X , D S, D IX , or
D IS mode; no implicit locking to the sub-tree.

D S: shared access; implicit D S locking to all de-
scendants.

D X : exclusive access; implicit D X locking to all de-
scendants.

Intention mode is used to indicate that compatible locks
are going to be requested at finer level and thereby prevents
incompatible non-intention locks (D S and D X) on upper
level. Table 2 gives the compatibility of lock modes, where
’+’ means conflict.

Locks are always requested from root to leaves. On the
other hand, locks should be reversely released from leaves
to root. Intention modes are not applicable to leaf nodes.

3.3. Cache consistency control

Physical blocks fetched over networks are cached in
iSCSI initiators’ buffer caches. Buffer caches will be
checked first when a physical block is requested. In or-
der to avoid revalidating consistency of cached data blocks
every time, we employ a mechanism based on callback. A
callback record will be set up on iSCSI target side when
a physical block is read out. When an iSCSI initiator is
going to write a physical block, it first sends a SCSI CDB
with write request. The iSCSI initiator will wait for a R2T
response before starting transmitting data. When an iSCSI
target receives a SCSI CDB with write request, it will check
callback records for the requested physical blocks. If there
are outstanding callback records, callback requests will be
sent to those iSCSI initiators to ask them to purge the re-
quested physical blocks out of their buffer caches. A iSCSI
target will not send R2T response until it receives confir-
mations for all callback requests that it sent out.

3.4. Transaction file sharing semantics

In our design, file-accessing operations are grouped into
transactions. Every transaction will be assigned a unique
transaction id within the session between an iSCSI initiator
and an iSCSI target.

Deadlocks are going to happen since we are support-
ing transactions. Due to the nature of random access of
file data, it is difficult to prevent deadlocks from happen-
ing. Therefore, we use deadlock detection mechanism to
detect deadlock when they have happened. When detecting
a deadlock, a victim transaction will be selected and rolled
back. The mechanism to detect deadlocks is to find a loop
among transactions and locks.

3.5. Implementation components

Figure 2 shows the architecture overview of our imple-
mentations. We insert new modules in to both iSCSI ini-
tiators and iSCSI targets. Our implementation is based on
the ext2 file system. The metadata and file data stored on
storage devices are intact.

In iSCSI initiators, vfs is used between the upper level
system call layer and the lower level iSCSI layer. we have
inserted following two modules into the kernel of iSCSI
initiators.

iSCSI client module is actually a modified ext2 file
system module. It manages transactions and various
metadata and normal data locks.

Initiator cache manager module manages a dedi-
cated buffer cache for the iSCSI client module. It sup-
ports callback mechanism to assure cache consistency.
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Figure 2. Overview of the architecture

An iSCSI target is responsible for maintaining active
transactions, maintaining opened files, supporting call-
backs for cached physical blocks, and so on. In iSCSI tar-
gets, we have inserted following three modules into iSCSI
targets’ kernel.

Metadata lock manager module manages lock re-
quests for metadata objects mentioned in Section 3.1.
It handles deadlock detection and resolution caused by
metadata locking requests.

File lock manager module manages transaction re-
quests, file open/close requests, and block group lock
requests. It is also responsible for deadlock detection
and resolution.

Target cache manager module maintains callback
records for physical blocks cached at iSCSI initiators.
When there is a SCSI CDB with write command trig-
gering callbacks, this module is also responsible for
suspending the write command until all confirmations
for callback requests are received.

4. Simulation Results

We use network simulator ns-2 to simulate network en-
vironments. Our schemes are implemented as modules run-
ning on host nodes in ns-2. The implementation is based on
the ext2 file system as described in Section 3.5. We imple-
ment application-level iSCSI initiators and iSCSI targets,
which contain components as presented in Section 3.5.

Table 3 shows the parameters we used for SCSI disk
modules in all of our simulations. These parameters are
following the specification of Seagate Cheetah 15K.3
family disk drives. However, no cache of disk modules

1average of 49 to 75 Mbytes/sec

Table 3. Parameters of SCSI disk modules
Average Latency 2.0 msec

Average Read Seek Time 3.6 msec
Average Write Seek Time 3.9 msec

Internal Transfer Rate 62 Mbytes/sec1

is assumed in our simulations. Once a Read/Write
command leaves the waiting queue on an iSCSI tar-
get for execution, the delay for Read/Write access
one block of data is computed as DelayRead W rite
AverageLatency AverageSeekTimeRead W rite
BlockSize InternalTrans f erRate.

In our simulations, we let iSCSI drivers on iSCSI ini-
tiators send a SCSI CDB for every physical block. iSCSI
targets process requests, including locking requests and
read/write requests, sequentially.

4.1. Scheme Overhead

In order to investigate the overhead of our concurrency
control and cache consistency scheme, we run simulations
for single sequential writing of a single file. The operations
are run as a single transaction as defined in Section 3.4.
The file size we used in these simulations is 100MB. For
writing of each physical block, we assume that each physi-
cal block should be read from its iSCSI target first and then
written back. We have run this simulation for several dif-
ferent network configurations. Due to space limit, we only
show the result that we get under one configuration. Fig-
ure 3 shows the composition of transaction time under this
configuration. We use different size for physical blocks and
different size for block groups defined in Section 3.2. For
certain block group size, the total transaction time will de-
crease as the physical block size increasing. This is because
larger physical block size requires less number of transmis-
sion and hence saves propagation delay. On the other hand,
when using the same physical block size and varying block
group size, the time spent on normal data locks decrease
as we increase block group size. Larger group size would
require less number of locking requests.

4.2. Effectiveness of Caching

In our design, physical blocks are cached in iSCSI ini-
tiators’ buffer cache to improve performance. Our next set
of simulations is trying to understand the effectiveness of
such caching as the environment of iSCSI extending from
LAN to WAN. In addition, we also try to investigate what
are the major factors affecting effectiveness of caching and
how.

In order to reflect file access patterns of real world, we
use trace data generated from modified TPC-C benchmark
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Figure 3. Composition of total transac-
tion time for sequential access with band-
width=100Mbps and latency=1msec

of the Transaction Processing Performance Council (TPC).
The TPC-C benchmark is an OnLine Transaction Process-
ing (OLTP) benchmark for database systems. We adapt this
benchmark to generate file access traces. TPC-C bench-
mark involves a warehouse management database with 9
relation tables. We view each relation table as a file storing
fix-sized records consecutively. TPC-C benchmark has 5
different transactions in SQL. For each transaction, we only
trace the location of real reading or writing of records in the
table files. We totally ignore additional database metadata
such as index for keys in real database systems. For a trans-
action involving one or more than one table files, all table
files are opened with proper mode before any reading or
writing of data blocks.

Network bandwidth and latency are two potential factors
that could affect effectiveness of iSCSI initiator caching.
We set up a configuration of TPC-C with 4 warehouses.
Each warehouse has 10 distinct districts. There are a num-
ber of customers registered to a district. Initially, we gen-
erate information to load the 9 table files. After loading
initial data, the size of these 9 files range from over 380B
to 120MB. We collect trace data from one client terminal,
which is bond to one of the 4 warehouses. There are 200
transactions generated from this client terminal. The dis-
tribution of these transaction is 45% new order, 43% pay-
ment, 4% order status, 4% delivery, and 4% store level.
In this set of simulation, we use 4K as physical block size
and 1 as block group size. In Table 4, we show the com-
parison of with and without iSCSI initiator caching. The
network bandwidth is 100Mbps and the network latency is
1msec. There are 724888 blocks accessed from cache. We
also run simulations for other network configuration, which

Table 4. Comparison of w/ and w/o iSCSI
initiator caching bandwidth=100Mbps la-
tency=1msec

Time (sec) w/ cache w/o cache
reading blocks 29.5 5785.5
total 50.2 5806.3

show the performance will be intolerable without caching
as iSCSI-based systems extend to WAN.

Our cache consistency scheme employs callback mech-
anism. A SCSI write command will be blocked at an iSCSI
target until all response for callback requests are received.
Therefore, access patterns for blocks will affect effective-
ness of caching and performance of caching consistency
control scheme. Still using the aforementioned TPC-C con-
figuration, we run simulations three times with 2, 3, and 4
client terminals, respectively. Each simulation is run for
3600 seconds. In each simulation, only one client is re-
peatedly writing 10 physical blocks. For the other clients,
they are repeatedly reading the same 10 physical blocks.
Each reading and each writing is a single transaction, so
no deadlock could happen. The result show that as the
number of concurrent readers increases, the single writer
spends more time on getting block from iSCSI target. This
is caused by two reasons. First, with higher concurrency,
writing command conflicts more with reading command.
Secondly, with more reader, there is a higher chance that
when a write command is sent, a copy of the requested
block is cached on some other clients.

References

[1] D. Roselli, J. Lorch, and T. Anderson. A comparison of file
system workloads. In In Proceedings of USENIX Technical
Conference, pages 41–54, San Diego, California, June 2000.

[2] J. Satran, K. Meth, C. Sapuntzakis, M. Chadalapaka, and E.
Zeidner. iSCSI. IP Storage Working Group, January 2003.

[3] Y. Lu and D. Du. Performance study of iscsi-based storage
subsystems. IEEE Communication Magazine, 41(8):76–82,
2003.

[4] R. Burns, R. Rees, and D. Long. Semi-preemptible locks
for a distributed file system. In In proceedings of the 2000
International Performance Computing and Communication
Conference(IPCCC), Phoenix, AZ, February 2000.

[5] S. Tang, Y. Lu, and D. Du. Performance study of software-
based iscsi security. In Proceedings of First International
IEEE Security in Storage Workshop, pages 70–79, 2002.

[6] M. Satyanarayanan, J. Kistler, P. Kumar, M. Okasaki, E.
Siegel, and D. Steere. Coda: A highly available file system
for a distributed workstation environment. IEEE Transac-
tions on Computers, 39(4):447–459, 1990.



238



239

USING DATASPACE TO SUPPORT
LONG-TERM STEWARDSHIP

OF REMOTE AND DISTRIBUTED DATA

Robert L. Grossman, Dave Hanley,
Xinwei Hong and Parthasarathy Krishnaswamy

Laboratory for Advanced Computing
University of Illinois at Chicago

851 South Morgan Street
Chicago, Illinois 60607
tel: +1-312-413-2176

email: grossman@uic.edu, dave@lac.uic.edu,
xwhong@lac.uic.edu, babu@lac.uic.edu

1 Introduction

In this note, we introduce DataSpace Archives. DataSpace Archives are built on top
of DataSpace’s DSTP servers [2] and are designed not only to provide a long term
archiving of data, but also to enable the archived data to be discovered, explored,
integrated and mined.

DataSpace Archives are based upon web services. Web services’ UDDI and WSDL
mechanisms provide a simple means for any web service client to discover relevant
archived data [7]. In addition, data in DataSpace Archives can carry a variety of XML
metadata, and the DSTP servers which underly the DataSpace Archives provide direct
access to this metadata.

Unfortunately, web services today do not provide the scalabilty required to work
with large remote data sets. For this reason, DataSpace Archives employ a scalable
web service we have developed called SOAP+.

As the amount of data grows, the ability to explore and browse remote and dis-
tributed archived data will become more and more important. For this reason, a
requirement of DataSpace Archives is that they support direct browsing of the data
they contain, without the necessity of first retrieving the data and then opening a lo-
cal application. DataSpace Archives also support a type of distributed database keys,
which are described below and which enable data sets in different DataSpace Archives
to be easily integrated.

Finally, DataSpace Archives use emerging internet storage platforms, such as IBP
[1] and OceanStore [6], as a basis for providing long term storage, long past the demise
of any individual disk or server.



240

2 The DataSpace Transfer Protocol (DSTP)

In previous work we have developed a protocol called the the DataSpace Transport
Protocol or DSTP [2]. Data in DataSpace Archives can be accessed directly using
DSTP or indirectly using web service based DSTP operations. Here is a quick summary
of DSTP.

Data model. Data accessible via DSTP servers form a distributed collection of
attribute-based data (in contrast to the file-based data that is usually available in data
archives) that we refer to as DataSpace. At the simplest, data in DataSpace consists
of records which may be distributed across nodes either vertically (by attributes) or
horizontally (by records). Data records and data attributes are joined using universal
keys, which are described next.

Universal Keys. One of the novel aspects of DataSpace is that certain attributes can
be identified as universal (correlation) keys or UCKs by associating globally unique IDs
or GUIDs to them. The assumption in DataSpace is that two distributed attributes
having the same universal keys, as identified by their GUIDs, can be joined. This
simple mechanism enables DataSpace to support vertically partitioned data, that is
data records whose attributes are geographically distributed across DSTP servers.

In addition, universal keys may be attached to data sets and, in this way, data sets
may be horizontally partitioned. In other words, data records may be geographically
distributed across DSTP servers.

Metadata. The DataSpace infrastructure provides direct support for metadata. Each
data set and each attribute can have metadata associated with it. In general, we assume
that the metadata is in XML. Some DataSpace applications, with large amounts of
metadata, use alternate formats for metadata for greater efficiency.

Data Access. DSTP-based access to data is via SOAP/XML or what we call SOAP+.
SOAP+ is a variant of SOAP we have developed which employs a separate SOAP/XML-
based control channel together with a data channel which employs a streaming protocol
for moving large amounts of data or metadata efficiently. Depending upon the request,
DSTP servers may return one or more attributes, one or more records, or entire data
sets. DSTP servers can also return metadata about data sets or a list of universal keys
associated with a data set. Each DSTP server has a special file called the catalog file
containing XML metadata about the data sets on the server.

AAA Model. The default access and security model in DataSpace s a web-based
instead of a grid-based access mechanism. The difference is how authentication, au-
thorization, access (AAA) are handled. For long term stewardship, mechanisms to
manage AAA are quite challenging. The default assumption in DataSpace is that data
is open to anyone with a browser. Clearly, many data sets require some type of AAA
infrastructure. In these cases, a AAA infrastructure can be implemented using of the
standard approaches, such as Globus GSI, IETF SSL/TLS, etc.

DSTP clients and servers support the following services:
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• Discovery queries. Discovery in DataSpace is via web service’s WSDL and UDDI
mechanisms. This provides a standards based discovery mechanism for the dis-
covery of data sets, data attributes, metadata, etc.

• Metadata queries. DSTP servers automatically create XML metadata about the
data they serve and provide a simple mechanism for user supplied metadata.
DSTP Clients can request attribute based metadata, data set based metadata,
or metadata summarizing all the datasets managed by the DSTP server. For
example, metadata associated with an attribute typically contains the number
of data records on the DSTP server associated with that attribute, a description
of the attribute, the min and max values, and perhaps the providence of the
attribute.

• UCK queries. Several DSTP operations are based upon universal keys or UCks.
For example, a DSTP client can request all UCKs from two distributed DSTP
servers, set a UCK, and then request all attributes associated with that UCK to
join vertically partitioned data. Similarly, a DSTP client can request the UCKs
from two distributed DSTP servers associated with data sets on the server, set a
data set UCK, and retrieve all data records associated with that UCK to merge
two horizontally partitioned data sets.

• Range based queries. DSTP client and servers support range based queries.
Ranges may be determined using a single UCK or using several UCKs.

• Server side sampling. It is easy for DSTP Servers to overwhelm DSTP Client
applications with data. The DSTP servers support server side sampling so that
the appropriate amounts of data can be returned.

• Support for missing values. DSTP servers and clients support missing values as
a primitive data type. This is important for exploratory data analysis and many
data mining applications.

3 DataSpace Archives

We define a DataSpace Archive to consist of one or more DataSpace DSTP servers
with the following the additional structure:

• Internet-based, replicated storage. Since we cannot guarantee over long periods
of time that DSTP servers will be backed up and that the hardware will be
maintained, we have decided instead to rely, in part, on distributed, replicated
internet based storage, such as that provided by the OceanStore Project [6] or an
Internet Backplane Protocol enabled storage system [1]. We are not suggesting
that either of these two projects is ready yet to provide the type of long term
storage required for archiving data, but rather that, in principle, this type of
approach may play a role in helping to ensure the long term survival of data.
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• XML based metadata. DSTP servers have a mechanism for attaching auxiliary
information, such as XML metadata, to data sets. For example, PMML data
may be attached to data sets in DSTP servers. The Predictive Model Markup
(PMML) Language is an XML based markup language for working with sta-
tistical and data mining data sets and models [3]. It can be used to describe
data attributes, data mining attributes, and some common transformations used
for preparing data for analysis and mining. Maintaining data over long peri-
ods of time is made more complex by the many transformations, normalizations,
and aggregations that are generally part of data prepration. The assumption in
DataSpace Archives is that these are done using the transformations specified by
an open XML-based standard, such as PMML.

• Physical replicas. In practice, one of the most durable mechanisms for preserving
data is paper, as well as other durable materials such as metal or stone. Al-
though neither practical nor desirable in many cases, it is still useful to be able
to associate physical replicas with DataSpace data sets. If an ID (bar code, ra-
dio frequency ID, etc.) is attached to the physical replica, then this ID may be
associated with the data set in a DataSpace Archive. More generally, GUIDS
of various types may be associated with attributes and data sets in DataSpace.
These can be used so that reports, laboratory books, disks, tapes, etc. can be
associated with attributes, collections of attributes, and data sets in DataSpace.

4 Implementation and Experimental Studies

To understand some of the stewardship issues associated with DataSpace Archives, we
have taken the data sets in the University of California at Irvine Knowledge Discovery
in Databases Archive (UCI KDD Archive) [5] and created a DataSpace Archive using
them. This is available on line at data.dataspaceweb.org.

Prior to the DataSpace Archive which we created, the only way to retrieve data
from the UCI KDD Archive was via ftp. Moreover, as far as we are aware, the UCK
KDD Archive was available on only a single server. Using a DataSpace Archive, UCI
KDD data can now not only be directly viewed, but in addition, it can be explored
with simple exploratory data analysis operations. In addition, XML based metadata
is readily available.

We have also integrated the DSTP server with the Internet Backplane Protocol or
IBP [1], which provides a baseline replication of the physical storage underlying the
DSTP server. We are currently exploring additional internet based storage approaches
in order to improve the long term survival of the data, such as OceanStore [6]. We
have not implemented any physical replicas yet.

Finally, we note that DataSpace’s support for UCKs allows UCK KDD Archive
data to be integrated and correlated with other DataSpace data for the first time.
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Number
Records

DSTP:
SOAP/XML
(sec)

DSTP:
SOAP/XML+
(sec)

Speed-up

10,000 0.65 0.21 3.10
50,000 177 0.72 245.83
150,000 673 125 5.38
375,000 3078 301 10.23
1,000,000 21121 823 25.66

Table 1: DSTP servers have two modes for data access. One mode uses SOAP/XML,
which works for small data sets, and (small) metadata. The other mode uses a new
protocol called SOAP+ with seperate control and data channels which scales much
better for large and complex data sets.

Figure 1: We have put most of the data from the UCI KDD data sets into DataSpace
Archives. This figure illustrates the results of browsing one of the UCI KDD data sets
and graphing the results.
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5 Summary and Conclusion

In this note, we have introduced DataSpace Archives, which are archives for data sets
built on top of DataSpace’s DSTP servers. DataSpace Archives are designed to support
the long term archiving of data in a format in which it is easy to browse and explore
the archived data. In addition, DataSpace Archives enable geographically distributed
data to be integrated, even if the data comes from separate data sets. In general,
most current archives provide ftp access to data, but do not support the browsing,
exploration, and integration of large quantities of remote and distributed data.

We have implemented DataSpace Archives on top of Version 3.0 of DataSpace
and created an archive containing the University of California at Irvine Knowledge
Discovery in Databases Archive.

We are currently creating a DataSpace Archive containing approximately a hundred
data sets and about a Terabyte of data in order to test these ideas further.

We are also currently improving the internet based replicated storage for DataSpace
Archives, as well exploring additional mechanisms to ensure that long term survival of
the data is possible, such as the use of physical replicas for important data sets.

We are also working with the Data Mining Group [4] to standardize web services for
data discovery, data integration, and data mining so that DataSpace Archives remain
open and non-proprietary.
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Abstract

Promote-IT is an efficient heuristic scheduler that provides QoS guarantees for
accessing data from tertiary storage. It can deal with a wide variety of requests and
jukebox hardware. It provides short response and confirmation times, and makes good
use of the jukebox resources. It separates the scheduling and dispatching functionality
and effectively uses this separation to dispatch tasks earlier than scheduled, provided
that the resource constraints are respected and no task misses its deadline.

To prove the efficiency of Promote-IT we implemented alternative schedulers based
on different scheduling models and scheduling paradigms. The evaluation shows
that Promote-IT performs better than the other heuristic schedulers. Additionally,
Promote-IT provides response-times near the optimum in cases where the optimal
scheduler can be computed.

1 Introduction

Today multimedia data is generally stored in secondary storage (hard disks) and is from
there delivered to the users. However, the amount of storage capacity needed for a multi-
media archive is large and constantly growing with the expectations of the users. Tertiary-
storage jukeboxes can provide the required storage capacity in an attractive way if the data
can be accessed with real-time guarantees.

A jukebox1 is a large tertiary storage device that can access data from a large number
of removable storage media (RSM, for example DVDs or tapes) using a small number of
drives and one or more robots to move RSM between their shelves and the drives. A central
problem with this setup is that the RSM switching times are high, in the order of tens of
seconds. Thus, multiplexing between files may be many orders of magnitudes slower than
on a hard drive, where it takes only a few milliseconds. The second important problem is
the potential for resource contention that results from the shared resources in the jukebox.

1We use the term jukebox to refer to any type of Robotic Storage Library (RSL)
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Our hierarchical multimedia archive (HMA) is a service that provides flexible real-time
access to data stored in tertiary storage. The HMA can serve complex requests for the
real-time delivery of any combination of media files it stores. A request consists of a
deadline and a set of request units for individual files (or part of files). Such requests can
for instance result from a database query to compile a historical background for news on-
the-fly, or from a personalized entertainment program consisting of music video clips. The
HMA can also be used to provide real-time guarantees in the access of scientific data, e.g.,
earth measurements, weather forecast. In the latter cases it is especially important to be
able to tell the users in advance when the data will be available in secondary storage.

Tertiary storage plays an important role in supercomputing environments and scientific
computing. Essential to these environments is the capacity to deal with petabytes of data
that must be easily accessible to geographically distributed scientists. The storage hierarchy
that stores the data must be transparent to the users, except for the delays of accessing data
in tertiary storage. The IEEE Mass Storage System Reference Model [7] describes the
characteristics such systems should posses. Multiple hierarchical storage management
(HSM) systems have been developed, both conforming to the reference model and prior
to it. Some examples are the High Performance Storage System (HPSS) of the National
Storage Laboratory [23], and the Storage and Archive Manager File System (SAM-FS)
of Fujitsu [9]. The openness of the reference model permits to include specific real-time
services as future interfaces [23]. However, no HSM so far supports real-time services.
Our HMA can be incorporated in the reference model as a Storage Server component.

The HMA uses secondary storage as a buffer and cache for the data in its tertiary-storage
jukeboxes. The jukebox scheduler is the key component of the HMA that guarantees the
in-time promotion of data from tertiary storage to secondary storage. Apart from providing
real-time guarantees, the scheduler also tries to minimize the number of rejected requests,
minimize the response time for ASAP requests, minimize the confirmation time, and opti-
mize hardware utilization.

We use a new design of jukebox schedulers, where the scheduling and dispatching func-
tionality are clearly separated. This separation allows us to improve the performance of
the system, because the optimality criteria of both functions are different. The goal of the
schedule builder is to find feasible schedules for the requested data. Thus, the scheduler
tries to build schedules as flexible as possible and is not concerned about the optimal use of
the resources. The dispatcher, instead, is concerned about utilizing the jukebox resources
in an efficient manner. We introduce the concept of early dispatching, by which a dis-
patcher can dispatch the tasks earlier than scheduled as long as the resource constraints are
respected and no task misses its deadline.

The first step to build an efficient scheduler is to understand the scheduling problem thor-
oughly. On the one hand, we model the hardware and identify the parameters that define
the hardware behavior. Our model is flexible and can represent any present and expected
future jukebox hardware. On the other hand, we formalize the scheduling problem using
scheduling theory so that its characteristics and complexity can be analyzed, and the prob-
lem can be classified and compared with other scheduling problems. Given the complexity
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of the scheduling problem we are dealing with, there are many different ways in which it
can be modeled.

The most important of these models is the minimum switching model, which models the
problem as a flexible flow shop with three stages—load, read, unload. The model uses
shared resources to guarantee mutual exclusion in the use of the jukebox resources. This
model puts only a small restriction on the utilization of the resources, which additionally
results in better use of the resources and system performance. The model requires that once
an RSM is loaded in a drive, all the requested data of the RSM is read before the RSM is
unloaded. Thus, the schedules that can be built with this model have a minimum number
of switches.

Promote-IT is based on the minimum switching model. For every incoming request it
builds a new schedule that includes all the previously scheduled request units plus the
request units of the new request. It uses an efficient heuristic algorithm to find a solution
to an instance of the minimum switching model on-line. Promote-IT can deal with any
type of request and jukebox hardware. Additionally, it provides short response times and
confirmation times, and makes good use of the jukebox resources.

We defined different scheduling strategies for Promote-IT, which vary in the way in which
the jobs are added to the schedule. These strategies can be classified as Front-to-Back
(earliest deadline first (EDF) and earliest starting time first (ESTF)) and Back-to-Front
(latest deadline last (LDL) and latest starting time last (LSTL)). When using Front-to-
Back, each job is scheduled as early as possible, while with Back-to-Front, each job is
scheduled as late as possible. When using Back-to-Front, Promote-IT profits strongly from
the separation of scheduling and dispatching. The scheduler creates schedules with idle
times that are used by the dispatcher to dispatch tasks early. This combination proves
useful in many cases, especially when the use of a shared robot is the bottleneck in the
system.

The rest of the paper is organized as follows. Section 2 discusses related work. Section 3
presents some more details about Promote-IT. Section 4 evaluates Promote-IT, comparing
it’s capabilities and performance with that of other schedulers. Finally, Section 5 concludes
the paper.

2 Related Work

We first discuss two schedulers that can be used in a HMA. In Section 4 we compare the
performance of these schedulers with that of Promote-IT. Later in this section we briefly
discuss schedulers for more simple requests, schedulers with unsolved contention problems
and schedulers for discrete-media.

Lau et al. [15] present an aperiodic scheduler for Video-on-Demand systems that can use
two scheduling strategies: aggressive and conservative. When using the aggressive strategy
each job is scheduled and dispatched as early as possible, while when using the conserva-
tive strategy each job is scheduled and dispatched as late as possible. These two strategies
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are similar to the EDF and LDL strategies that we use in Promote-IT. An important differ-
ence between the strategies of Lau et al. and Promote-IT is that their strategies dispatch the
tasks in the same sequence and time as assigned in the schedule. Thus, the conservative
strategy performs poorly, because it leaves the resources idle, even when there are tasks
that need executing. Another important difference is that their algorithm handles the jobs
to include in the schedule as formed by a read task and a switch task. The switch task is
scheduled as a unity, although it involves unloading the RSM loaded in the drive and load-
ing the new RSM. Lau et al. assume that all the drives are identical and that the switching
time is constant, independently of the drive and shelf involved. The former assumption is
reasonable in many jukeboxes, but makes the algorithm difficult to generalize to the case
with non-identical drives. The latter assumption is not reasonable in most of the large juke-
boxes and forces the use of worst-case switching times when building the schedules. Using
more accurate switching times provides better schedules.

Federighi et al. [8] use requests similar to those of the HMA. In their system the videos
may be stored in multiple objects, with different sound tracks and subtitles corresponding
to each video. The requests in their system have soft deadlines, e.g., the data should be
available at around eight o’clock. Federighi et al. are mainly concerned about balancing
the load on distributed video file servers, which are placed near the users [2]. An important
difference with our approach is that, even if the requests consist of multiple objects, the
playback only begins once all the objects are available at the video file servers. We refer to
this type of approach as Fully-Staged-Before-Starting (FSBS).

There are multiple proposals for scheduling continuous data stored in one RSM [4, 6, 5,
21, 25, 11]. The main difference among these proposals is whether the data should be fully
staged before starting, streamed directly to the user, or pipelined (i.e., the data of a request
can be consumed while other data of the request is being staged). We show in our work
that pipelining the data is the best approach.

Various authors try to solve the problem of providing access to data contained in multiple
RSM, however their schedulers suffer from unsolved contention problems [1, 16, 12, 3].
Therefore, these schedulers cannot guarantee that the real-time deadlines are always met.
We analyze the faults in these schedulers in [17].

There are numerous proposals for scheduling requests for discrete data [24, 10, 22, 19, 20].
The goal of these schedulers is to minimize the average response time. In all cases, the
conclusion is that as much data as possible should be read from an RSM when the RSM
is loaded in the drive. These results support the minimum switching model that we use in
Promote-IT.

More et al. [20] are concerned with performing queries on data that is stored in multiple
tapes. Thus, a query may have multiple request units without real-time constraints. Their
goal is to minimize the response time of each query. They model the scheduling problem as
a two-machine flow-shop with additional constraints. In their model, the unload and load of
a tape are coupled. They propose the longest transfer-time first (LtF) algorithm that for each
query starts reading first the data of the sub-queries that require the longest transfer time. If
there are multiple sub-queries for the same tape they use the SORT algorithm proposed by
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Hillyer et al. [13] to decide the order in which the sub-queries should be read. The rationale
behind the LtF algorithm is that while the data of the longest sub-query is being read, there
is time to switch the tapes on the other drives and read the data corresponding to the shorter
sub-queries. Through analytical analysis and simulations they show that LtF provides short
response times.

In our HMA we can represent the type of requests More et al. are concerned with as a
request with multiple request units with the same delta deadline (see Section 3 for details
about the request of the HMA). The strategies of Promote-IT that use the latest starting time
as parameter to sort the jobs build similar schedules to those of LtF for this type of requests,
even if the length of the transfer is not the scheduling parameter used by Promote-IT. Given
a set of RSM with the same deadline and different transfer times, the ones with longer
transfer times will have earlier latest-starting-times. Thus, these strategies of Promote-IT
will also schedule the RSM to begin earlier.

3 Promote-IT

A request ri, which a user issues to the Hierarchical Multimedia Archive, consist of a
deadline and a set of li request units uij for individual files (or part of files). The request
can represent any kind of static temporal relation between the request units. Formally we
express the user request structure in the following way:

ri = (d̃i, asapi, maxConfi, {ui1, ui2, . . . , uili})

uij = (∆d̃ij, mij , oij, sij, bij)

The deadline d̃i of the request is the time by which the user must have guaranteed access
to the data. The flag asapi indicates if the request should be scheduled as soon as possible.
The user may specify no deadline (d̃i = ∞) if the only restriction is that the request should
be scheduled ASAP. The maximum confirmation time maxConfi is the time the user is
willing to wait in order to get a confirmation from the system, which indicates if the request
was accepted or rejected. The system must provide a confirmation before making the data
available, so maxConfi ≤ d̃i.

The relative deadline of the request unit ∆d̃ij is the time at which the data of the request
unit should be available, relative to the starting time of the request. The other parameters of
the request unit mij , oij , sij and bij represent the RSM where the data is stored, the offset
in the RSM, the size of the data, and the bandwidth with which the user wants to access the
data, respectively.

The starting time of the request must not be later than its deadline, so stk ≤ d̃k. If the
request is ASAP, the scheduler assigns the request the earliest possible starting time stk
that will allow it to be incorporated into the system. Thus, the scheduler must find the
minimum starting time stk that makes U ′ schedulable, where U ′ is the set of request units
that need scheduling. The scheduler tries different candidate starting times stxk and selects
the earliest feasible stxk. assigns it the starting time corresponding to its deadline. If the
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deadline of the request cannot be met, then the scheduler puts the request in the list of
unscheduled requests until it can schedule it or maxConfi is reached and the request is
rejected.

The structure of the scheduling algorithm of Promote-IT is the following:

1. Generate a candidate starting time stx
k and update the deadline of each request unit

so that d̃kj = stxk + ∆d̃kj. The algorithm uses a variation of the bisection method for
finding roots of mathematical functions.

2. Model U ′ as an instance of the minimum switching model. We represent the instance
of the problem by the set J of jobs to schedule.

3. Compute the medium schedules. For each RSM, compute m medium schedules—
one MS for each drive. Set the parameters of the duration and deadline of the read
tasks T2j to the corresponding values of the computed MS

4. Compute the resource assignment. The algorithm must incorporate each job Jj ∈ J
into the schedule. If the algorithm succeeds in finding a valid resource assignment,
the output of this step is a feasible schedule Sx; otherwise Sx = ∅. The pair (Sx, stxk)
is incorporated into the list of analyzed solutions.

5. Repeat from step 1 until the bisection stop-criteria is fulfilled for the list of can-
didates, i.e. the time difference between the last unsuccessful and first successful
candidate is smaller than a threshold.

6. Select the best solution. The best solution is the earliest candidate starting time for
which step 4 could compute a feasible schedule (min{stxk | Sx �= ∅}). If there is no
such stxk, the request rk is placed in the list of unscheduled requests to be scheduled
at a later time. Otherwise, the scheduler confirms the starting time stk to the user and
replaces the active schedule with the new feasible schedule.

In the minimum switching model we limit the number of jobs to one per RSM. This model
requires that all the requested data from an RSM must be read before the RSM is unloaded
from a drive. The processing environment of our model is a flexible flow shop with three
stages (FF3). The first stage is to load an RSM to a drive, the second stage is to read the
data from an RSM and the third is to unload the RSM. The jobs to be processed are of the
form Jj = {T1j , T2j , T3j}, with one task for each stage.

Both the drives and robots may all have different characteristics. Therefore, the processors
at each stage are modeled as unrelated. In the first stage there are l processors representing
the l loader robots. In the second stage there are m processors representing the drives.
In the third stage there are u processors representing the unloader robots. The robots in
the first and third stage may have some elements in common and in the worst case all
the elements will be the same: when all robots are able to load and unload. Because the
robots may be limited to serve only a subset of drives and shelves, there are jobs that can
be executed only in a subset of resources. In the model we indicate this by using machine
eligibility restrictions.
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The processing time of a reading task T2j is determined by computing a separate schedule
for all request units that are grouped into Jj. We call this schedule for an RSM a Medium
Schedule (MS). An MS determines in which order the data must be read once the RSM is
in the drive. As the drives may be non-identical, we compute a separate MS for each drive.
The optimization criterion for an MS is to maximize the time at which the RSM has to be
loaded in a drive to start reading data from it, in such a way that the deadlines of the request
units are met. In other words we want to determine the latest possible starting time of the
read. If the RSM is already loaded in a drive, the goal is to read the requested data before
the RSM must be unloaded.

In step 4 we use a branch-and-bound algorithm to prune the tree of possible assignments
of jukebox resources to the jobs in J . The branch-and-bound algorithm uses the best-drive
heuristic to choose which drive will be tried first to schedule a job and prune from the
tree the branches corresponding to drives which offer a worse solution. When pruning the
tree, the algorithm may be throwing away a feasible solution that an optimal scheduler
would find. But searching the whole tree of solutions is computationally unacceptable. For
comparison, we have also implemented an optimal scheduler, but it can take up to several
days to compute a feasible schedule for one new request, in contrast to the few milliseconds
needed by Promote-IT.

The jobs are incorporated to the schedule using any of the four strategies presented in Sec-
tion 1. None of the strategies is absolutely better than the others, because each strategy
can find schedules that cannot be found by the others. However, ESTF performs best in
most cases, and when the system load is very high it is convenient to use LDL. The dif-
ference in performance between the different strategies is small when compared with other
schedulers. Therefore, in the next section we use only ESTF and LDL as representatives of
Promote-IT.

4 Evaluation

To prove the efficiency of Promote-IT, we implemented alternative schedulers based on
different scheduling models and scheduling paradigms. On the one hand, we designed two
new schedulers: the jukebox early quantum scheduler (JEQS) and the optimal scheduler.
On the other hand, we extended some heuristic schedulers proposed in the literature (see
Section 2): the extended aggressive strategy, the extended conservative strategy and Fully-
Staged-Before-Starting (FSBS). Our extensions are able to deal with the requests used in
the HMA, and with jukeboxes with different drive models and multiple robots. Further-
more, they do not assume constant switching and reading times. The extended schedulers
have better properties than the original ones, while still keeping the features of the original
schedulers that we consider most important to evaluate.

The jukebox early quantum scheduler (JEQS) is a periodic scheduler. The basic heuristic
used by a periodic scheduler is to represent the requests as periodic tasks. A restriction
of periodic schedulers is that they can be used only for some special use cases of HMA,
as Video-on-Demand, because they are unable to deal with complex requests. Addition-
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ally, periodic schedulers have serious problems in avoiding resource-contention problems.
JEQS solves these problems by using the robots and drives in a cyclic way. The robot ex-
changes the contents of each drive at regular, fixed intervals. This results in a cyclic use of
the drives, which are dedicated to reading data of an RSM while the other drives are being
served by the robot. To our best knowledge, JEQS is the only correct periodic jukebox
scheduler. The other periodic jukebox schedulers presented in the literature do not deal
correctly with the resource-contention problem.

JEQS uses the scheduling theory on early quantum tasks (EQT) presented in [14]. An early
quantum task is a task whose first instance is executed in the next quantum after its arrival
and the rest of the instances are scheduled in a normal periodic way with the release time
immediately after the first execution. Although, JEQS is generally able to start incoming
requests in the next cycle of a drive, its performance is much worse than that of any of the
aperiodic schedulers.

The optimal scheduler is a scheduler that computes the minimum response time for each
incoming request. The objective of this scheduler is to be used as a baseline for evaluat-
ing the quality of the heuristic schedulers. The optimal scheduler cannot be used in a real
environment due to its computing-time requirements. The computing time increases expo-
nentially with the complexity of the requests and the system load. Therefore, we can only
use it for evaluation of small test sets and relatively low system load. The comparisons that
we performed show that the performance of Promote-IT is near the optimum, at least under
these special testing conditions.

The simulations shown in this section were performed with JukeTools [18], using in each
case representative jukebox architectures and request sets. Except when evaluating the
optimal scheduler, the size of the cache is 10% of the jukebox capacity. The number of
requests that can be handled by the schedulers in each of the examples shown depend on the
request set and the hardware used. In each of the individual comparisons all the schedulers
use the same request set and hardware simulation. As we show, some schedulers can handle
load better than others, and in general the load shown in the graphics is determined by the
load that can be handled by the most restrictive scheduler being compared.

Figure 1(a) compares the response time of aperiodic and periodic schedulers. Aperiodic
scheduling is represented by Promote-IT and FSBS, periodic scheduling by JEQS. In this
comparison the performance of Promote-IT is representative for the performance of the
extended aggressive strategy and extended conservative strategy, because the difference
in performance among these schedulers is negligible when compared with the difference
among Promote-IT, FSBS and JEQS. For JEQS we consider two variations: scheduling
normal quantum tasks (shown in the plots as ‘JEQS’) and scheduling only EQTs (shown
in the plots as ‘JEQS only EQTs’). We use FSBS in this comparison, because even though
FSBS is very simple in many cases it performs better than JEQS. FSBS has a similar behav-
ior to a First-Come-First-Serve scheduler, which virtually means that no serious scheduling
is done. It first serves a request completely and only then it provides access to the data of
the request.
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Figure 1: Aperiodic vs. periodic scheduling.
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Figure 2: Pipelining vs. full staging. Mean Response Time.
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The request set consists of 1000 ASAP requests that follow a Zipf distribution. Each request
corresponds to one long-video file, because of the restrictions imposed by JEQS. To be able
to use JEQS the request must be only for data stored in one RSM in a contiguous fashion.
Additionally, JEQS needs the data to be continuous-media. When using Promote-IT the
request is split in request units of 100 MB in size. The requests cannot be rejected, i.e.,
deadline and maximum confirmation time are infinite. The data in the jukebox is stored in
double-layered DVDs and each video is stored completely in one disk. However, one disk
may store multiple videos.

The jukebox has four identical DVD drives and one robot. The load time is between 21.8
and 24.8 seconds, while the unload time is between 14.3 and 17.4 seconds. The drives use
CAV technology and have a transfer speed that ranges between 7.96 and 20.53 MBps and
a maximum access time of 0.17 seconds.

The response time of Promote-IT is much shorter than the response time of JEQS. As the
system load increases, the performance of FSBS is also better than that of JEQS. JEQS
uses the resources poorly, because it performs multiple switches for reading data from an
RSM. In contrast, Promote-IT and FSBS use the resources efficiently by performing the
minimum amount of switches required to read the data.

The confirmation time of the aperiodic schedulers is shorter that that of JEQS (see Fig-
ure 1(b)). The main difference can be seen with ‘JEQS only EQTs’, because this scheduler
waits to accept a request until it can schedule it as an EQT. As the system load increases,
the possibilities of accepting a request as an EQT diminish drastically.

Periodic schedulers have a clear advantage over aperiodic schedulers in the computing time,
because they just need to evaluate a couple of formulae to decide if a request is schedulable.
However, this advantage is not visible to the end user, who notices only the response time
and the confirmation time. When evaluating the performance of the optimal scheduler, we
will show that the computing time becomes an important parameter when it influences the
confirmation time.

We conclude that periodic scheduling is a bad technique for scheduling a jukebox, because
even the FSBS scheduler—which is extremely simple—in many cases performs better than
JEQS. The bad performance of JEQS is not a characteristic of this particular scheduler,
but is intrinsic to any periodic jukebox scheduler. A periodic scheduler either needs to use
the robot in a cyclic way, or take into account the worst-case time for robot contention in
the execution time of the tasks. Therefore, when using a periodic scheduler, the best-case
starting time for a request that does not produce a cache-hit is the maximum time needed to
switch all the drives, even if the system load is very low and all drives are idle. In the same
scenario, the starting time for Promote-IT is in most cases just the time to load the RSM in
the drive and read the data of the first request unit. For FSBS it is the time needed to stage
all the data of the request.

The response time of Promote-IT is also shorter than that of FSBS, as can be seen in
Figure 1(a). FSBS stages the whole file before giving access to the user. Therefore, the
response of FSBS has as lower limit the time to buffer the whole file, while the lower limit
for Promote-IT is the time to buffer the first request unit.
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Figure 3: Early vs. conservative dispatching

Moreover, Figure 2 shows that the difference in performance between Promote-IT and
FSBS is even bigger when the data of a request is stored in multiple RSM. In this case,
FSBS needs to perform multiple switches before giving access to the data, while in most
cases Promote-IT only needs to perform one switch to read the data corresponding to the
first request unit and the rest of the switches are performed at a later time, when the sched-
uler finds time for them. In this case the data in the jukebox consists of 30% long videos,
30% short videos, 30% music and 10% discrete data. The requests follow that pattern as
well. The data of a request may be stored in multiple RSM.

Figure 3(a) compares the response time of Promote-IT and the extended conservative strat-
egy (denoted as ’Conservative’). The main difference between LDL and the extended con-
servative strategy is the early dispatching of the tasks. As the system load increases, the
difference in performance between Promote-IT and Conservative grows very fast. At the
highest load level plotted, Conservative is unable to handle the load, because the waiting
queue is too long. The test set is the same one described for comparing Promote-IT and
FSBS with the requested data stored in multiple RSM.

The response time and confirmation time of LDL and ESTF are very similar when com-
pared against the corresponding times of Conservative. Furthermore, when the system load
is high, LDL performs slightly better than ESTF. This reinforces the idea that Back-to-
Front is an interesting scheduling mechanism, when it is combined with early dispatching.

The confirmation time of Promote-IT is also lower than of Conservative (see Figure 3(b)).
Conservative often fails to schedule incoming requests, because the starting time they
should be assigned is too far into the future. Thus, the requests stay in the queue of un-
scheduled requests until the scheduler can incorporate them to the schedule.

The robot and drive utilization of Conservative is much less than that of LDL. When not
using early dispatching, the resources are left idle, even if there are tasks in the schedule.
Thus, when new requests arrive, their chances to be scheduled immediately are lower, even
when the system load is low, because the scheduler has tasks scheduled for the future.
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Figure 4: Uncoupled vs. Coupled load and unload. Mean Response Time

Figure 4 compares the response time of Promote-IT and the extended aggressive strategy
(denoted as ’Aggressive’). The main difference between Aggressive and the ESTF strategy
of Promote-IT is that Aggressive couples the load and unload into a single switch opera-
tion. This means that the RSM stay loaded in the drives until the drives are needed again.
Therefore, Aggressive needs to perform first an unload before using a drive, even if the
drive and the robot are idle before the request arrival.

When the system load is low and medium, Promote-IT provides shorter response times
than Aggressive. However, when the system load is high and the robot is a clear bottleneck
in the system, as in the case plotted in Figure 4(a), Aggressive has a better mean response
time than Promote-IT. In this situation, the response time of Aggressive is similar to that
of LDL, although Aggressive builds schedules Front-to-Back and LDL builds them Back-
to-Front. However, Aggressive delays the last unload of a drive as much as possible, until
the drive is needed again, which is the original goal of a Back-to-Front strategy. When the
system load is low or medium, it is highly probable that at the time when a new request
arrives there are idle resources. Therefore, delaying the unloads as much as Aggressive
does affects the performance negatively. When the load is high it does not really matter,
because there is no opportunity to unload the drives early anyhow. When the robot is
not a strong bottleneck, as in the case plotted in Figure 4(b), Promote-IT provides shorter
response times than Aggressive, even under high system loads. In this case unloading late
is not beneficial: also ESTF performs better than LDL.

The request set used to compare Promote-IT and Aggressive is the same as the one used
for FSBS and the extended conservative strategy. The ‘Fast Jukebox’ has the same config-
uration as previously described, in this configuration the robot is a clear bottleneck. The
‘Slow Jukebox’ has four DVD drives based on CLV technology with a transfer speed of
7.96 MBps and an maximum access time of 1.5 seconds.

Figure 5(a) shows that the response time provided by Promote-IT is near the optimal re-
sponse time. Moreover, the difference in response time between Promote-IT and the opti-
mal scheduler is smaller than the difference between Aggressive and Promote-IT. The plots
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Figure 5: Heuristic vs. Optimal

indicate that the difference in response time between Promote-IT and the optimal is larger
as the system load increases. Therefore, we regret that we cannot run the optimal scheduler
with higher loads.

The computing time of the optimal scheduler increases exponentially when the load of the
system increases, while the computation time of the heuristic schedulers is nearly con-
stant (see Figure 5(b)). The computing times of the optimal scheduler are so high that the
scheduler cannot be used in an on-line system.

Additionally, we have observed that the optimal scheduler does not unload an RSM before
all the data has been read in any of the runs we have performed. This is an important result
in favor of the minimum switching model, on which Promote-IT is based, because even if
the optimal scheduler has the possibility of performing intermediate switches, it does not
do so.

The request set consists of 200 ASAP requests for long videos. The optimal scheduler does
not deal with the cache administration. Therefore, each request corresponds to a different
video and the cache is empty at the beginning of the runs. Thus, there are no cache-hits.

The jukebox only contains long videos, which were generated in the same way as those
described in the comparison against JEQS. However, the data in the jukebox is stored in
single-layered DVDs and the drives use CLV technology with a transfer speed of 6.45
MBps and a constant access time of 0.1 seconds.

When building the request sets we have to make a trade-off between keeping the number
of request units per request low and having more than one request unit per RSM. The com-
putational complexity of the optimal scheduler increases exponentially with the number of
request units to schedule, so we should only split each file in a small number of request
units. On the other hand, we want to give the optimal scheduler the possibility to switch
an RSM without reading all the requested data from the RSM. Therefore, it is desirable
to have more than one request unit per RSM. In the tests that we show here, we chose to
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Flexibility: requests ++ ++ ++ ++ −− +

Flexibility: hardware ++ + ++ ++ − −

Response time −− + − ++ −− +++

Confirmation time + ++ + ++ − −−−

Computing time ++ ++ ++ ++ +++ −−−

Deal with high load + ++ −− ++ −− −−−

Table 1: Summary of the performance comparison. The notation used is: excellent (+++),
very good (++), good (+), bad (−), very bad (−−), and unusable (−−−).

chop the files in request units of 2.5 GB. Thus, the number of request units per request is
between 1 and 4 and the number of RSM involved is 1 or 2.

Throughout this section we have shown that Promote-IT performs better than the other
schedulers. However, the magnitude of the performance difference varies in each case. We
put the differences in context and compare all the schedulers among each other.

We evaluate the capacity of the schedulers to deal with flexible requests and hardware.
We also evaluate the schedulers regarding the response time, confirmation time, computing
time and the capacity to deal with high load. Table 1 summarizes the evaluation. The clas-
sification we assigned to the schedulers in the last four categories is the result of observing
their performance in multiple test setups. Although, the classification is quite subjective
and difficult to quantify, we believe that it reflects correctly the average performance of
the schedulers. Note that the original conservative and aggressive strategy and FSBS can
only handle very limited types of jukeboxes and requests. The extensions we performed
are discussed in [17].

5 Conclusions

Through Promote-IT we show that tertiary storage can be used effectively in systems with
real-time requirements, for instance in a hierarchical multimedia archive. However, careful
scheduling is needed in order to provide those guarantees, to use the resources efficiently,
and to provide short response times to the users. A performance comparison of different
schedulers, shows that Promote-IT performs better than the other heuristic schedulers, and
additionally provides response-times near the optimum in cases where the optimal sched-
uler can be evaluated.
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Abstract 

 
As access to multi-teraflop platforms has become more available in the Department of 
Energy Advanced Simulation Computing (ASCI) environment, large-scale simulations 
are generating terabytes of data that may be located remotely to the site where the data 
will be archived. This paper describes the Data Service Archive (DSA), a service 
oriented capability for simplifying and optimizing the distributed archive activity.  The 
DSA is a distributed application that uses Grid components to allocate, coordinate, and 
monitor operations required for archiving large datasets. Additional DSA components 
provide optimization and resource management of striped tape storage.  
 

1. Introduction 
 
In the ASCI environment, deployment of massively parallel computational platforms and 
distributed resource management infrastructure for remote access allows computations to 
execute on the platform that can best perform the calculation. Data generated by very 
large calculations can be hundreds of gigabytes to terabytes in size. Datasets are typically 
distributed across hundreds to thousands of files that range in size from megabytes to 
gigabytes. Extracting information from the data and transporting the reduced data to a 
local platform that can provide the interactivity required for the analysis is used to 
accomplish analysis and visualization of large datasets.  
 
Large datasets typically remain in the site that generated the data until they are archived 
to a locally managed parallel tape storage system (HPSS [1]). Although high-speed wide 
area networks and parallel file transfer components allow high performance movement of 
data, the amount of time required to transmit large datasets allows opportunities for errors 
that abort the transfer. Recovery from aborted transfers requires retransmission of files. A 
disk file system is used to buffer the dataset files before they are transferred across the 
local area network to HPSS parallel tape storage. Both the wide-area and the local-area 
transfers cause sustained high-speed bursts of data. Until the file data has been placed 
onto tape storage, files remain on file system storage. Without resource control and 
coordination, multiple occurrences of this activity can overwhelm both the intermediate 
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file system and the archival system, especially as more capability platforms, like ASCI Q, 
Purple, and Red Storm, are deployed.  
 
Grid middleware [2] can address some of the issues involved in archiving large 
distributed datasets. Core services in Grid middleware provide uniform methods for 
scheduling, allocating resources, and monitoring data transfer processes on distributed 
systems. More recently, middleware developed for Data Grids address issues involving 
data location, storage resources, and cache management. The SDSC Storage Resource 
Broker (SRB [3]) supports location transparency and data replication.  Storage Resource 
Managers [4], [5] implement storage access and cache management policies. Current 
Data Grids [6], [7], [8], [9] are built to support efficient and cost effective access to large 
data collections for a geographically distributed community of scientists. Because of this, 
the focus has been on enabling distributed access to a store of metadata and data, which 
may also be replicated in the data grid. Our focus is on usability, robustness, and resource 
issues involved in transferring large datasets to a parallel tape archival storage. 
  
We describe the Data Service Archive (DSA), a service oriented capability for 
simplifying and optimizing the distributed archive activity.  The DSA is a distributed 
application that uses Grid components to allocate, coordinate, and monitor operations 
required for archiving large datasets. Additional DSA components provide optimization 
and resource management capabilities for striped tape storage. The following sections 
present requirements, a functional overview, and performance of the DSA application. 
Planned extensions to the DSA are also discussed.    
 
2. High Level Requirements 

 
The requirements for the DSA include the usual requirements of a simple, easily 
managed user interface to make archival and retrieval requests. Ease of use includes 
desktop access to clear interfaces for control and status as well as to a well-defined 
mechanism for making archive requests. The DSA should mitigate complexities of the 
distributed environment by providing a common interface regardless of data location and 
recovery from system failures where possible; however, file and resource brokering are 
not required. Any desktop software should have minimal prerequisites with automated 
installation and update procedures. Command line invocation is also required to support 
requests from running processes.  
 
Resource management requirements for the DSA include managing concurrent archival 
requests, scheduling requests and data transfers, optimizing data transfers, and balancing 
the load on the file system cache and the tape storage system. Optimizing data transfers 
and balancing the load on the parallel tape storage system requires obtaining knowledge 
of network topology, tape drive resources, and striping policies of the tape system. 
 
Software management requirements call for a clean integration with HPSS, preserving 
the storage system namespace and storage system policies. Accessing the storage system 
must be through supported mechanisms. 
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Additional functional requirements for the DSA include support for data integrity 
features, multiple storage patterns, and archive persistence management. Data integrity 
features should be available to verify correct wide area network transfers as well as the 
final image on tape storage.  Storage patterns initially to be supported include requests to 
create an archive of tarred files as well as a directory hierarchy of files. Archive 
persistence introduces the notion of useful data lifetime for an archive.  
 
3. DSA Architecture and Functional Overview 

 
The DSA is a distributed application with components (shown in Figure 1) located on the 
user’s desktop, a web server, the remote platform where the dataset resides, and the local 
data analysis cluster that is integrated with HPSS. 
 
The DSA GUI is started from the user’s desktop by accessing the Data Services DSA 
URL, which automatically checks for updates and optionally downloads the latest 
software release. The GUI allows users to define an archive request, which requires 
filling in a minimal amount of information required for data transfer. Features for archive 
formats and data integrity options may also be selected. An optional comment field is 
available that can be viewed in context of the archive action request. When the request is 
submitted for execution, DSA prompts for an identification that will be used to generate 
an archive identification that uniquely identifies this archive action from all others. The 
user may check status from the GUI or close it and check status at a later time through 
the information management service interface in the GUI.  
 
 

Desktop Web server
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Services

Remote

Platform
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node

HPSS

Scheduler/

Shpss node

HPSS client 

I/O nodes
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Figure 1. 

 
Desktop software interacts with a servlet on the DSA web server to transmit the archive 
action request.  The servlet maintains state throughout the archive process to enable 
recovery, restart, or cancellation. The servlet creates metadata that identifies the archive 
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request, then starts a two-step process to archive the data to HPSS. The servlet constructs 
and submits a transfer request to the scheduler on the data analysis cluster. Once 
scheduled, the request is sent to the grid services application server, which starts an 
instance of the dataset transfer program (Zephyr) on the remote platform in behalf of the 
user.  
 
Zephyr, which runs with the user’s credentials, determines what files are to be transferred 
and how the transfer is to take place. If verification is requested, a checksum is generated 
for each file and the checksum information is placed in the archive. If a format option is 
selected, the data is processed on the remote platform. After completing the information 
gathering and formatting steps, Zephyr transfers the data to a Parallel Virtual File System 
(PVFS [10]) disk storage on the data analysis cluster using a parallel file transfer 
protocol. This completes the first step of the archive process.  
 
The current DSA implementation does not preallocate space on the PVFS disk cache. If a 
storage ceiling threshold is reached on the file system, the DSA service becomes 
unavailable until space is reclaimed.  Dataset transfer operations detect the error and may 
be recovered through normal DSA recovery mechanisms. 
 
The transfer to HPSS is scheduled immediately after completion of the transfer from the 
remote platform by a component called shpss. When data files are transferred as a 
directory hierarchy, shpss places files in groups called partitions.  Files in a partition have 
the same approximate file characteristics (currently file size) so they will be placed in the 
same storage class on HPSS and, consequently, use the same tape resources. The number 
of files in a partition is limited to facilitate recovery if errors occur and to improve overall 
transfer throughput by preventing large transfers from starving small transfers in the 
scheduling process.  
 
Shpss acts as tape resource manager by placing partition transfers in queues based on the 
partition file characteristics. The shpss queues use a node allocation mechanism to model 
the scheduling activity so that it tracks HPSS allocation of tape units. Use of this node 
allocation mechanism allows management of queues and queuing policies through 
standard system queue manager commands.  If enough tape units are available, the 
transfer starts immediately. The partition transfer uses the HPSS parallel file transfer 
protocol interface with local file system commands to move data from PVFS on the data 
analysis cluster to tape over the cluster interconnect. Once files in a partition have been 
transferred to HPSS, they are removed from the PVFS. 
 
DSA retrieval requests are initiated through the DSA user interface, as are archival 
requests. Users can request retrieval of individual files or directories of files based on the 
HPSS namespace to a target system and directory. Retrieval requests, like the archival 
requests, are processed by web service middleware that maintains state and starts a two-
step process to retrieve the data from the tape storage system and place the data onto the 
target directory. Shpss is launched on the data analysis system to stage the data from tape 
storage to the PVFS disk cache. As in archival requests, shpss groups file retrievals into 
partitions and places each partition into a scheduling queue based on the tape resource 
requirements. If tape resources are available, transfers start immediately. When all data 
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for a retrieval request has been staged to the disk cache, the web middleware starts a 
Zephyr process to move the data to the target directory.   
 
For shpss to set up partition groups for a retrieval operation, it must query HPSS to 
obtain information about each file in the retrieval request. Currently, only tape striping 
information is obtained. File media identification information is not queried. Delays can 
occur if files are not co-located on media or they are retrieved in a different order than 
stored.  
 
The DSA gives users complete control over the portion of the HPSS namespace where 
their data is written. Therefore it is possible for more than one archive request to reside in 
a common part of the namespace (e.g. subdirectory).  As HPSS performance can be 
affected by read requests not matching the tape file patterns created during the write 
process, it is possible for users to present read requests through the DSA that are less than 
efficient.  In the ASCI environment, retrieval requests from the tape archive are made 
much less frequently than storage requests. Considerable thought was given to tracking 
tape storage patterns within the HPSS namespace. It was determined that at the present 
time the cost/benefit of ordering read requests to tape file images was not economical in 
light of the amount of work required to add the capability and the complexity introduced 
into the overall system. If a read request points to the ‘top’ of a single archive in the 
HPSS namespace, the file read ordering will be the same as the original write ordering 
 
4. DSA and other Technologies 

 
Sandia National Laboratories has had a grid in place since 2001 [11] based upon a 
workflow processor layered on top of the globus toolkit. Being a distributed application, 
the DSA exploits grid technologies by using the grid workflow processor to sequence the 
Zephyr and shpss components. The Globus toolkit is used for submitting partitions when 
scheduling transfers within shpss. Some modifications were made to the globus toolkit to 
enhance the operation of the DSA. Run time stdout/stderr capability was added to get 
immediate feedback from components running in PBS, and the ability to request DSA 
specific resources within the cluster where added. 
 
As mentioned above the DSA is manipulated using servlets on a web server. This 
presents a well-defined API for building additional features into the system. The DSA, 
through the web server, can be managed either through traditional POST and GET 
operations through HTTPS, or by passing java objects to requisite servlets themselves. 
The SimTracker [12] application, being developed at the three primary weapons 
laboratories, is in the process of integrating DSA into its functionality through this 
interface. 
 
The DSA does not use data grid technologies in the classic sense, although it is possible 
that gridftp [13] could be used for remote transfers. This is primarily due to a differing set 
of requirements between the programs. The file-tracking requirement employed in the 
data grid is not necessary since there is only one HPSS system where data is stored to 
tape and the user controls where files go in the HPSS namespace. An evaluation of 
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current requirements is underway that may lead to rudimentary replica management to 
enhance the robustness of the archive. 
 
The ability to integrate DSA with other archiving technologies or intermediate data stores 
is also being examined. The infrastructure where DSA resides includes a file migration 
capability to assist analysts with moving data between computational resources. Each 
resource has its own file system(s), which are dedicated to work performed on the 
resource. The DSA has access to these resources and can read or write data to and from 
any system supporting parallel ftp. 
 
5. Performance 

 
Moving large data sets within the ASCI environment creates contention for infrastructure 
resources. The impact and severity of this contention is dependent upon the location of 
the data and the performance capability of the resources affected. Significant effort has 
been put forth to implement performance enhanced resources. High-speed networks, 
parallel file systems and HPSS are examples of resources where significant investment 
has produced high performance point solutions within the distributed architecture. 
However, relying on point solutions as general mechanisms for moving large amounts of 
data is often inefficient, impractical or requires a large investment in user effort and 
education.  
 
The DSA examines three key areas that affect performance when users manually store 
data in the HPSS system—resource contention, storage patterns, and scheduling 
algorithms. HPSS integration in the computational environment looks at issues involved 
in resource contention in normal and failure conditions. Storage patterns affect how 
efficiently an archive can be placed into HPSS as well as how efficiently the tape storage 
is used. Scheduling algorithms impact system overhead and tape resource.  HPSS 
schedules tape mounts within the system where it has knowledge only of the current file 
request and not the entire archive request. Integrating advanced scheduling with HPSS 
can eliminate system overhead by holding transfer sessions that cannot immediately be 
serviced and increase tape utilization by the algorithms used to select transfers to run. 
 
5.1 HPSS Integration in the Computational Environment 
 

Upon completion of a computation, data is not 'local' to the HPSS system. By local it is 
meant that there are systems and networks extraneous to HPSS that are involved in the 
movement of the computational data. These systems and networks are not dedicated to 
the archival process, thus are shared with other processes causing potential bottlenecks 
and points of failure. Contention for resource can affect the performance of data 
movement causing poor performance for the activity at hand as well as for other work 
that is contending for that resource. While poor performance can be unacceptable in the 
computational environment, in the worse case, resource failure can occur. 
 
Intermittent resource failure is considered performance degradation, and must be 
managed by the DSA. In a manual process this is often handled by restarting the entire 
archival operation, as the user does not have the capability or time to manage 
intermediate restarts. Whether the simulation data resides on the same network as HPSS 
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or across the wide area, it may not be practical or possible for the user to manage the 
involved systems and networks. Thus the most practical method for eliminating the 
probability of resource failure is to reduce the number of failure points in any given 
process. 
 
In order to reduce resource contention, the DSA moves data to a file system that is 
directly accessible by HPSS tape movers. At first glance this seems counterproductive 
since the data is actually moved twice. However experience has shown that increased 
performance in network throughput and the localizing process of data to HPSS outweighs 
the duplicated movement. This is especially true when the data resides at a remote 
location over the wide area where the network is unable to reach even modest levels of 
performance. 
 
5.2 Storage Patterns 
 
The HPSS system achieves much of its performance by striping files across multiple tape 
drives. This allows data to be written in parallel increasing writes speeds by a factor 
equivalent to the number of tape drives involved in the write process. The number of tape 
drives used during a write is determined by two factors: 
 

1. The size of the file will determine a stripe width through an internal mapping 
defined in HPSS. 

2. The ftp client may force a stripe width through a class of service request. 
 
Both of the above features have tradeoffs in either HPSS overhead or in the ability to 
efficiently read data back from HPSS. The user does not want to be concerned with the 
details of how to effectively write data to HPSS. Furthermore, the ftp client does not lend 
itself to storing multiple directories of varying file sizes, some very large and some 
relatively small. This often leads to bulk transfers on a directory basis regardless of file 
size and the number of striping changes that can occur. 
 
Using the internal mapping mechanism can cause tapes to be mounted and dismounted 
many times during a transfer. Long delays may be experienced due to waiting for one or 
more tape units to become free. In an oversubscribed HPSS system, the results can be 
drastic as data transfers contend for tape units. Client connections time out, small data 
transfers are starved by large transfers and the user must be vigilant in monitoring the 
entire activity to assure all their data is successfully stored. 
 
By using the client specified mechanism, all data is stored in the same striping scheme.  
If the client chooses a stripe width that is too narrow, large files are written inefficiently 
which also affects HPSS overall throughput. If the client chooses a striping width that is 
too wide, small files are split across many tapes and the transfer must wait for drives to 
become available.  
 
Again, in an oversubscribed HPSS system, these effects are magnified. 
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By using either of these methods, large data movements starve smaller ones. This has two 
affects on practical data storage. First, by design, the ftp client-server model can time out 
if asked to wait too long for an activity. Second, in the ASCI environment, security 
credentials can time out causing any automation of transfers to fail. 
 
The DSA manages these issues by partitioning an entire transfer, including files in 
multiple directories, into data movements that share a common stripe width. Each 
partition is transferred one after the other at a time determined by the DSA scheduler (see 
below). Partitions also have finite length thus allowing the scheduling of smaller transfers 
between larger ones. 
 
5.3 Scheduling Techniques 
 
Integrating with a sophisticated system such as HPSS can be performed in two ways. The 
DSA can both tightly couple with internal information and state through some well-
defined interface, or it can couple in a loose fashion by modeling the HPSS information 
and state through an external mechanism. The DSA chooses the latter in order to simplify 
its architecture and reduce development time. DSA transfers data using the common 
HPSS ftp client and models tape drive allocation using a batch queuing system scheduler. 
 
There are two primary reasons to schedule data transfers into HPSS. First is to put on 
hold any ftp sessions that cannot be immediately serviced by HPSS, thus eliminating 
unnecessary system overhead. This situation is made worse when an active ftp 
connection that is transferring data alters its required HPSS resource (number of tape 
drives) and cannot immediately be serviced. Such situations can result in protocol 
timeouts and a general level of confusion on the part of the user.  The second reason for 
scheduling data transfers is to increase HPSS utilization.  
 
HPSS schedules tape resources in a FIFO manner when a file is opened for reading or 
writing. Such FIFO queuing is known to be less than optimal when there are free 
resources (tape drives) and a pending request that could use those resources but is not at 
the head of the queue. 
 
The DSA models HPSS storage resources in a similar fashion as nodes in a cluster. The 
number of tape drives is managed by the queuing system and the DSA requests a specific 
number of tape drives when submitting a transfer. This requires the DSA to examine the 
size of the data to be transferred and to map that size to a particular stripe width. This 
also requires that data be grouped into partitions that do not violate HPSS stripe width 
policy for any given transfer request. 
 
In order to optimize transfer requests, the batch queuing system scheduler is configured 
to use a technique called backfill. When scheduling jobs (transfers) using backfill, a 
standard FIFO queue is employed to determine when a job should start. However, when 
the job at the head of the queue cannot be started because the amount of free resources is 
not sufficient, the scheduler looks ‘back’ into the queue to see if any other pending job 
can be satisfied by the amount of free resources. If such a job exists and the amount of 
time required by that job is not longer than the wait time for the request at the head of the 
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queue, the backfill job is started. Such a technique requires that DSA calculate the 
amount of time required for a transfer to take place. 
 
Determining the exact amount of time required to transfer a group of files into HPSS is 
not necessarily possible. While transfer rates onto tape are fairly well behaved, it is not 
possible to determine with high certainty, the number of tapes that will be required to 
service a particular transfer which effects the calculation of total transfer time. Hardware 
compression, the amount of existing data on a tape and the number of tape loads that 
must be serviced prior to any given load operation all play a roll in the level of 
uncertainty. The DSA uses the following equation to estimate the amount of time 
required to perform a given transfer: 
 
 Ni

1i

loadwidthrateistartuploginjob / TSRXTTT 
 
The total time required to perform a transfer (Tjob) equals the amount of time required to 
perform an ftp client login (Tlogin) plus the sum of the amount of time for each individual 
file to transfer. The time to transfer an individual file is a factor of some startup time for 
the transfer (Tstartup), the file size (Xi) divided by transfer rate (Rrate), and the time required 
to perform a new load of all required tapes (SwidthxTload). It is known that this estimation 
is less than optimal since files can span tape volumes, which would require additional 
tape loads. It could be possible to obtain a fair estimate of how many tape loads a 
particular transfer will require, but at this point we leave such optimization to future 
work. 
 
Lastly, knowing that external influences can affect a transfer and cause the time needed 
to move the data onto tape to exceed the requested job time, the DSA has the ability to 
track what files have been successfully moved. This permits ‘retrying’ files that did not 
move by creating a new partition containing the files that did not transfer and repeating 
this process. 
 
5.4 Transfer Comparisons 
 
A complete treatment of DSA performance is a paper unto itself. We try here to give a 
heads up of how well the unique features of the DSA compare to conventional manual 
processes for moving data. There are three questions we want to answer: 
 

1. Does the partitioning of data files into common storage class transfers increase 
performance over the practice of 'mput *'? 

2. Can we schedule data for transfer that will make more efficient use of HPSS 
resources (tape drives) and increase throughput? 

3. What performance is gained when minimizing network resource utilization by 
staging data to a file system that is directly accessed by the HPSS movers? 

 
To help answer these questions we ran simple experiments that transferred data into 
HPSS in a controlled environment. No other activity was permitted when the experiments 
where run. Care was taken to keep comparisons as equal as possible taking into account 
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that seek times would increase and deferred mounts could skew results when compared to 
actual mounts. 
 
For the first question we ran ten transfers—five for an shpss run and five that performed 
the local file mput for pftp. All transfers used the same data set that was located on a file 
system mounted on the machines where the HPSS mover processes ran. Sufficient time 
was given between transfers to allow HPSS to settle into a common state. The data set 
was approximately 34 gigabytes of simulation data made up of 23 files purposefully 
named such that HPSS would have to request a varying number of tape drives during the 
pftp process. 
 
The results were that the standard local file pftp processes averaged 15 minutes to 
perform the transfer while the shpss processes averaged 13 minutes. We expect this 
difference to grow, in favor of shpss, when the number of files and changes in class of 
service increases. 
 
To examine scheduled transfers, the same considerations above were used. The HPSS 
system was configured with eight tape drives. Two sessions were run with each 
transferring nine data sets concurrently. One session started nine shpss processes in a 
scheduler configured to perform backfill, and one that simply ran nine different pftp 
sessions using mlfput. The average time taken to complete the nine pftp/mlfput transfers 
was 33 minutes. The average time for the nine shpss sessions to complete was 27 
minutes. 
 
To evaluate the affect of reducing network resource utilization, the first suite of tests was 
rerun with the standard pftp process using the normal mput command that transfers data 
to HPSS movers over the local area network.  Results from this test showed an order of 
magnitude improvement in performance when the locally accessible file system cache 
was used. 
 
In all, this is a brief glimpse at performance. We feel that other variables in HPSS not 
present during these tests could alter results. Further investigation is planned to help 
understand the DSA environment better and improve its performance. 
 
6. Conclusions and Future Work 
. 
The focus of the DSA work to date has been on simplifying and optimizing the process of 
archiving large datasets. Initial testing indicates that reducing resource utilization, 
managing storage patterns, and scheduling transfers have accomplished performance 
improvements. In the near future we will be integrating the DSA service with a 
simulation tracking service, which maintains metadata and snapshots of results from 
simulation runs. We also plan to support video archiving for a video editing system.  We 
expect these applications will require additional cache management support for retrieval 
operations. 
 
 
 



271

 
Acknowledgments 
 
The work was performed at Sandia National Laboratories. Sandia is a multiprogram 
laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United 
States Department of Energy under Contract DE-AC04-94AL85000.   
 
References 
 
[1] HPSS, High Performance Storage System, 

http://www4.clearlake.ibm.com/hpss/index.jsp . 
[2] Foster, I., KesselMan, C., Tuecke, S. “The Anatomy of the Grid: Enabling 

Scalable Virtual Organization”, The International Journal of High Performance 
Computing Applications, Vol. 15, 2001,  pp. 200-222. 

[3] Rajasekar, A., Wan, M., Moore, R. “MySRB & SRBB – Components of a Data 
Grid”, 11th International Symposium on High Performance Distributed 
Computing (HPDC-11), Edinburgh, Scotland, July 24-26, 2002. 

[4] Shoshani, A., Sim, A., Gu, J. “Storage Resource Managers: Middleware 
Components for Grid Storage”, 19th IEEE Symposium on Mass Storage Systems, 
2002. 

[5] Shoshani, A., Bernardo, L., Nordberg, H., Rotem, D., Sim, A. “Storage 
Management for High Energy Physics Applications”, Computing in High Energy 
Physics, 1998. 

[6] Chervenak, A., Foster, I., Kesselman, C., Salisbury, C., Tuecke, S. “The Data 
Grid: Towards an Architecture for the Distributed Management and Analysis of 
Large Scientific Datasets”, Journal of Network and Computer Applications, 23, 
pp. 187-200, 2001. 

[7] Hoschek, W., Jaen-Martinez, J., Samar, A., Stockinger, H., Stockinger, K. “Data 
Management in an International Data Grid Project”, IEEE ACM International 
Workshop on Grid Computing (Grid 2000), December, 2000, Bangalore, India. 

[8] PPDG: Particle Physics Data Grid, http://www.cacr.calteck.edu/ppdg. 
[9] Tierney, B., Johnston, W., Lee, J. “A Cache-Based Data Intensive Distributed 

Computing Architecture for “Grid” Applications”, CERN School of Computing, 
September 2000. 

[10] Ligon, III, W.B., and Ross, R. B., "PVFS: Parallel Virtual File System," Beowulf 
Cluster Computing with Linux, Thomas Sterling, editor, pages 391-430, MIT 
Press, November, 2001.  

[11] Beiriger, J., Bivens, H., Humphreys, S., Johnson, W., and Rhea, R.,  
"Constructing the ASCI Computational Grid," Ninth IEEE International 
Symposium on High Performance Distributed Computing, August, 2000. 

[12] SimTracker. http://www.llnl.gov/icc/sdd/img/images/SimTrack.pdf. 
[13] Laszewski, G., Alunkal, B., Gawor, J., Madhuri, R., Plaszczak, P, Sun, X. “A File 

Transfer Component for Grids”, 2003 International Conference on Parallel and 
Distributed Processing Techniques and Applications, June, 2003, Las Vegas, 
Nevada. 



272



273

Interconnection Architectures for Petabyte-Scale
High-Performance Storage Systems

Andy D. Hospodor
Senior Member, IEEE

andy.hospodor@ieee.org

Ethan L. Miller
Storage Systems Research Center

University of California, Santa Cruz
elm@cs.ucsc.edu

Abstract

As demand for storage bandwidth and capacity grows,
designers have proposed the construction of petabyte-
scale storage systems. Rather than relying upon a few
very large storage arrays, these petabyte-scale systems
have thousands of individual disks working together to
provide aggregate storage system bandwidth exceeding
100 GB/s. However, providing this bandwidth to storage
system clients becomes difficult due to limits in network
technology. This paper discusses different interconnection
topologies for large disk-based systems, drawing on previ-
ous experience from the parallel computing community. By
choosing the right network, storage system designers can
eliminate the need for expensive high-bandwidth commu-
nication links and provide a highly-redundant network re-
silient against single node failures. We analyze several dif-
ferent topology choices and explore the tradeoffs between
cost and performance. Using simulations, we uncover po-
tential pitfalls, such as the placement of connections be-
tween the storage system network and its clients, that may
arise when designing such a large system.

1. Introduction

Modern high-performance computing systems require
storage systems capable of storing petabytes1 of data,
and delivering that data to thousands of computing el-
ements at aggregate speeds exceeding 100 GB/s. Just
as high-performance computers have shifted from a few
very powerful computation elements to networks of thou-
sands of commodity-type computing elements, storage sys-
tems must make the transition from relatively few high-
performance storage engines to thousands of networked
commodity-type storage devices.

1A petabyte (PB) is 250 bytes.

The first part of this shift is already occurring at the
storage device level. Today, many storage subsystems uti-
lize low-cost commodity storage in the form of 3.5” hard
disk drives. The heads, media and electronics of these de-
vices are often identical to storage used on desktop comput-
ers. The only remaining differentiator between desktop and
server storage is the interface. At present, Fibre-Channel
and SCSI remain the choice of large, high-end storage sys-
tems while the AT attachment (ATA) remains the choice of
desktop storage. However, the introduction of the Serial
ATA interface provides nearly equivalent performance and
a greatly reduced cost to attach storage.

Most current designs for such petabyte-scale systems
rely upon relatively large individual storage systems that
must be connected by very high-speed networks in order to
provide the required transfer bandwidths to each storage el-
ement. We have developed alternatives to this design tech-
nique using 1 Gb/s network speeds and small (4–12 port)
switching elements to connect individual object-based stor-
age devices, usually single disks. By including a small-
scale switch on each drive, we develop a design that is more
scalable and less expensive than using larger storage ele-
ments because we can use cheaper networks and switches.
Moreover, our design is more resistant to failures—if a sin-
gle switch or node fails, data can simply flow around it.
Since failure of a single switch typically makes data from
at least one storage element unavailable, maintaining less
data per storage element makes the overall storage system
more resilient.

In this paper, we present alternative interconnection net-
work designs for a petabyte-scale storage system built from
individual nodes consisting of a disk drive and 4–12 port
gigabit network switch. We explore alternative network
topologies, focusing on overall performance and resistance
to individual switch failures. We are less concerned with
disk failures—disks will fail regardless of interconnection
network topology, and there is other research on redun-
dancy schemes for massive-scale storage systems [16].



274

2. Background

There are many existing techniques that provide high-
bandwidth file service, including RAID, storage area net-
works, and network-attached storage. However, these tech-
niques cannot provide 100 GB/s on their own, and each has
limitations that manifest in a petabyte-scale storage sys-
tem. Rather, network topologies originally developed for
massively parallel computers are better suited to construct
massive storage systems.

2.1. Existing Storage Architectures

RAID (Redundant Array of Independent Disks) [2] pro-
tects a disk array against failure of an individual drive.
However, the RAID system is limited to the aggregate per-
formance of the underlying array. RAID arrays are typi-
cally limited to about 16 disks; larger arrays begin to suffer
from reliability problems and issues of internal bandwidth.
Systems such as Swift [9] have proposed the use of RAID
on very large disk arrays by computing parity across sub-
sections of disks, thus allowing the construction of larger
arrays. However, such systems still suffer from a basic
problem: connections between the disks in the array and
to the outside world are limited by the speed of the inter-
connection network.

Storage area networks (SANs) aggregate many de-
vices together at the block level. Storage systems are
connected together via network, typically FibreChannel,
through high-performance switches. This arrangement al-
lows servers to share a pool of storage, and can enable the
use of hundreds of disks in a single system. However, the
primary use of SANs is to decouple servers from storage
devices, not to provide high bandwidth. While SANs are
appropriate for high I/O rate systems, they cannot provide
high bandwidth without appropriate interconnection net-
work topology.

Network-attached storage [6] (NAS) is similar to SAN-
based storage in that both designs have pools of storage
connected to servers via networks. In NAS, however, in-
dividual devices present storage at the file level rather than
the block level. This means that individual devices are re-
sponsible for managing their own data layout; in SANs,
data layout is managed by the servers. While most exist-
ing network-attached storage is implemented in the form of
CIFS- or NFS-style file systems, object-based storage [15]
is fast becoming a good choice for large-scale storage sys-
tems [16]. Current object-based file systems such as Lus-
tre [13] use relatively large storage nodes, each imple-
mented as a standard network file server with dozens of
disks. As a result, they must use relatively high-speed inter-
connections to provide the necessary aggregate bandwidth.
In contrast, tightly coupling switches and individual disks

can provide the same high bandwidth with much less ex-
pensive, lower-speed networks and switches.

2.2. Parallel Processing

Interconnection networks for computing elements have
long been the subject of parallel computing research. No
clear winner has emerged; rather, there are many different
interconnection topologies, each with its own advantages
and disadvantages, as discussed in Section 3. Traditional
multiprocessors such as the Intel Touchstone Delta [14]
and the CM-5 [10] segregated I/O nodes from computing
nodes, typically placing I/O nodes at the edge of the par-
allel computer. File systems developed for these configu-
rations were capable of high performance [3, 12] using a
relatively small number of RAID-based arrays, eliminating
the need for more complex interconnection networks in the
storage system.

There have been a few systems that suggested embed-
ding storage in a multiprocessor network. In RAMA [11],
every multiprocessor compute node had its own disk and
switch. RAMA, however, did not consider storage systems
on the scale that are necessary for today’s systems, and did
not consider the wide range of topologies discussed in this
paper.

Fortunately, storage systems place different, and some-
what less stringent, demands on the interconnection net-
work than parallel processors. Computing nodes typically
communicate using small, low latency messages, but stor-
age access involves large transfers and relatively high la-
tency. As a result, parallel computers require custom net-
work hardware, while storage interconnection networks,
because of their tolerance for higher latency, can exploit
commodity technologies such as gigabit Ethernet.

2.3. Issues with Large Storage Scaling

A petabyte-scale storage system must meet many de-
mands: it must provide high bandwidth at reasonable la-
tency, it must be both continuously available and reliable, it
must not lose data, and its performance must scale as its ca-
pacity increases. Existing large-scale storage systems have
some of these characteristics, but not all of them. For exam-
ple, most existing storage systems are scaled by replacing
the entire storage system in a “forklift upgrade.” This ap-
proach is unacceptable in a system containing petabytes of
data because the system is simply too large. While there
are techniques for dynamically adding storage capacity to
a existing system [7], the inability of such systems to scale
in performance remains an issue.

One petabyte of storage capacity requires about 4096
(212) storage devices of 250 GB each; disks with this ca-
pacity are appearing in the consumer desktop market in
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Figure 1. Disk throughput as a function of
transfer size.

early 2004. A typical high-performance disk, the Seagate
Cheetah 10K, has a 200 MB/s FibreChannel interface and
spins at 10000 RPM with a 5.3 ms average seek time and
sustained transfer rate of 44 MB/s. In a typical transac-
tion processing environment, the Cheetah would service a
4 KB request in about 8.3 ms for a maximum of 120 I/Os
per second, or 0.5 MB/s from each drive. The aggregate
from all 4096 drives would be 4096 × 0.5 MB/s, or only
2 GB/s—far below the required bandwidth of 100 GB/s. By
increasing the request size to 512 KB, disk throughput is in-
creased to 25 MB/s per drive, for an aggregate bandwidth of
100 GB/s. Alternatively, Figure 1 shows that low-cost se-
rial ATA drives, such as the 7200 RPM Seagate Barracuda
7200, could also meet the 100 GB/s requirement with a
slightly larger request size of 1 MB.

3. Interconnection Strategies

The interconnection network in a petabyte-scale storage
system must be capable of handling an aggregate band-
width of 100 GB/s as well as providing a connection to
each n-storage node capable of transferring 25n MB/s of
data. Thus, a 1 Gb/s network link can support nodes with
at most 2–3 disks, and a 10 Gb/s network link can support
up to 25 disks per node. As with any technology, however,
faster is more expensive—1 Gb/s networks cost less than
$20 per port, while 10 Gb/s can cost $5000 per port. In
time, 10 Gb/s networks will drop in price, but it is likely
that storage bandwidth demands will increase, making a
tradeoff still necessary. This non-linear tradeoff in cost-
performance compels us to consider complex architectures
that can leverage 1 Gb/s interconnects.

The challenge facing storage system designers is an ar-
chitecture that connects the storage to servers. Figure 2(a)
shows a simple strategy that connects a server to 32 stor-
age devices through a switch. Simple replication of this
strategy 128 times yields a system capable of meeting the
requirement. This strategy is remarkably similar to RAID
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(a) Disks connected to a single server. This configuration is sus-
ceptible to loss of availability if a single switch or server fails.
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(b) Disks connected to redundant servers. Switch failure is still an
issue, but routers allow for more redundancy.

Figure 2. Simple interconnection strategies.

level 0, known as Just a Bunch of Disks (JBOD), and suf-
fers from similar issues with reliability described later in
the paper. Here, the port cost would be 4096 switch ports
of 1 Gb/s and 128 ports of 10 Gb/s. However, the placement
of data becomes crucial in order to keep all storage devices
active. Since individual servers can only communicate with
a small fraction of the total disk, clients must send their re-
quests to the correct server. Unless there is a switching net-
work comparable to that in the designs we discuss below
interposed between the clients and the servers, this design
is not viable. If there is a switching fabric between clients
and servers, the designs below provide guidelines for how
the network should be designed.
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3.1. Fat Trees

Figure 2(b) shows a hierarchical strategy similar to a fat-
tree that provides redundant connections between compo-
nents. This strategy expands to have each server connect to
two of eight routers that interconnect with the 128 switches
that finally attach the 4096 storage devices. Each router
has 32 ports attached to the servers and 128 ports attached
to each of the switches and seven additional ports to the
other routers. The port cost would be 4096 ports of 1 Gb/s,
2048 ports of 10 Gb/s that connect the 128 switches to the
8 routers (one port at either end), 112 ports of 10 Gb/s that
interconnect the 8 routers, and 256 ports of 10 Gb/s that
connect each servers to two routers. This configuration has
the added drawback that the routers must be very large; it is
typically not possible to build monolithic network devices
with over 100 ports, so the routers would have to be con-
structed as multi-stage devices. While this device would
allow any client to access any disk, the routers in this con-
figuration would be very expensive. Furthermore, the 2418
ports of 10 Gb/s add nearly $10M to the overall cost, mak-
ing this configuration a poor choice.

3.2. Butterfly Networks

Butterfly networks provide a structure similar to the hi-
erarchical strategy at a more reasonable cost. Figure 3
shows a butterfly network interconnection strategy that
connects disks to servers. The butterfly network can have
relatively few links, but the links may need to be faster be-
cause each layer of the network must carry the entire traffic
load on its links. In order to keep the individual links be-
low 1 Gb/s, the butterfly network would need 1024 links
per level for an aggregate throughput of 100 GB/s. Build-
ing a full butterfly network for 4096 disks using 1024 links
and 128 switches per level would require three levels of
16-port switches and an additional level of 36-port “con-
centrators” to route data to and from 32 disks. Alterna-
tively, the switching network could be built entirely from
five levels of 8-port switches, using an additional level of
10-port switches to aggregate individual disks together. We
use this second configuration in the remainder of the paper
because, while 16 port switches are possible, we believe
that the 8 port switches necessary for the second design are
more reasonable.

While butterfly networks appear attractive in many
ways, they do not have the fault-tolerance provided by
cube-style networks such as meshes and torii. In fact, only
a single path exists between any pair of server and storage
devices connected by the butterfly network. In traditional
parallel computers, network failures could be handled ei-
ther by shutting down the affected nodes or by shutting
down the entire system. Storage fabrics, on the other hand,
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Figure 3. Disks connected in a butterfly net-
work topology.

must continue to run even in the face of network failures,
making butterfly networks less attractive unless there is a
method to route traffic around failed links. Cube-style net-
works have many routes between any two nodes in the fab-
ric, making them more tolerant of link failures.

3.3. Meshes and Torii

Figure 4(a) shows a mesh strategy that combines the
storage device with a small switch that contains four 1 GB/s
ports. The 4096 storage devices would be arranged as
a 64 × 64 mesh with routers connecting the edge of the
mesh to the servers. This configuration would require eight
routers to connect to 128 servers to provide the necessary
100 GB/s bandwidth. This configuration would require
16384 1 Gb/s ports for the storage, 256 10 Gb/s ports that
connect the 8 routers to the servers on two edges of the
mesh, and the 256 10 Gb/s ports that connect the servers to
the routers. Optionally, another 256 ports would connect
all four sides of the mesh to the routers, although this much
redundancy is not likely to be necessary. Router intercon-
nects are no longer necessary because the mesh provides
alternate paths in case of failure.

Torus topologies, shown in Figure 4(b), are similar to
meshes, but with the addition of “wrap-around” connec-
tions between opposing edges. The inclusion of these ad-
ditional connections does not greatly increase cost, but it
cuts the average path length—the distance between servers
and storage for a given request—by a factor of two, reduc-
ing required bandwidth and contention for network links.
However, this design choice requires external connectivity
into the storage fabric through routers placed at dedicated
locations within the torus .

Mesh and torus topologies are likely a good fit for large
scale storage systems built from “bricks,” as proposed by
IBM (IceCube [8]) and Hewlett Packard (Federated Ar-
ray of Bricks [5]). Such topologies are naturally limited
to three dimensions (six connections) per element, though
they may resemble hypercubes if multiple highly connected
disks are packed into a single “brick.”
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(a) Disks connected in a mesh topology.
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(b) Disks connected in a torus topology.

Figure 4. Mesh and torus interconnection
topologies.

3.4. Hypercubes

Figure 5 shows a hypercube strategy [1] of a two-
dimensional hypercube of degree four that intersperses the
routers and storage devices throughout the hypercube. In a
4096 node storage system, 3968 storage devices and 128
routers could be arranged in a hypercube of degree 12.
Each node in this configuration has twelve 1 Gb/s ports and
each router has two additional 10 Gb/s ports that connect
to two servers. Bandwidth in the hypercube topology may
scale better than in the mesh and torus topologies, but the
cost is higher because the number of connections at each
node increases as the system gets larger. Note also that hy-
percubes are a special case of torii; for example, a degree

� � � � � �

� � � � � � �

Figure 5. Disks connected in a hypercube
topology.

12 hypercube can also be considered a 6-D symmetrical
torus. Furthermore, the hypercube can be extended as a
torus by adding nodes in one dimension; there is no need
to add nodes in powers of two.

Hypercubes and high-dimensional torii need not be built
from individual disks and routers. To make packaging less
expensive, a small group of disks may be assembled into
a unit, and the units connected together using a lower-
dimensional torus. For units with eight disks in a degree 12
hypercube, this approach requires each unit to have 48 ex-
ternal connections—eight connections per cube face. This
is not an unreasonable requirement if the system uses giga-
bit Ethernet or optical fiber network connections.

4. Analytic Results

All of the topologies listed in Section 3 appear capable
of providing 100 GB/s bandwidth from a cluster of 4096
disks. Further inspection shows that, because of limitations
in link capacities, this is not the case. Moreover, the topolo-
gies differ in several critical ways, including overall system
cost, aggregate bandwidth, latency and resistance to com-
ponent failures. We analyzed the basic characteristics of
seven specific topologies, listed in Table 1.

4.1. System Cost

One benefit for the designs in which switches are em-
bedded in the “storage fabric” is that they require far fewer
high speed ports at the cost of additional low speed ports.
The 2004 cost of a gigabit Ethernet port is less than $20,
whereas the cost of a 10 gigabit Ethernet port is on the or-
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Network Dimensions Ports

Fat Tree 32-8-32-1024 6,512
2D mesh 64 × 64 16,384
2D torus 64 × 64 16,384
3D torus 16 × 16 × 16 24,576
4D torus 8 × 8 × 8 × 8 32,768
5D torus 4 × 8 × 4 × 8×4 40,960
6D hypercube 4 × 4 × 4 × 4×4×4 49,152
Butterfly 256 4 × 4 switches/layer 14,336

Table 1. Switching fabric topologies to ac-
commodate about 4000 disks.
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Figure 6. Average number of network hops
and expected per-link bandwidth for each in-
terconnection network topology. The “inde-
pendent” topology is omitted because it re-
lies upon the host computer for communica-
tion between storage nodes.

der of $5000. This non-linear tradeoff makes the fabric-
type structures more appealing than the other structures be-
cause they simply cost less. The overall cost of a 4096 node
system with different configurations is shown in Figure 7.
The “independent” system is shown as a baseline; in such
a system, each disk is connected to exactly one server, and
servers are not connected to one another. While this is by
far the least expensive option, it requires that the file sys-
tem use the network of host servers to manage client access
of data from the entire storage system, and limits the stor-
age system’s ability to perform internal communication for
reliability and other functions. Among the other options,
lower dimensionality “cubes” are the least expensive, with
higher-dimension and cubes and torii being the most ex-
pensive and butterfly networks in between.
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Figure 7. Total system cost for different in-
terconnection network topologies. The “in-
dependent” topology relies upon the host
computer for communication between stor-
age nodes.

4.2. System Bandwidth

Another consideration for massive storage systems is
the average number of network hops between a disk and
a server, as shown in Figure 6. The number of hops is
crucial because the maximum simultaneous bandwidth to
all disks is link speed×number of links

average hops . Systems with a small
number of links but few average hops may perform bet-
ter than systems with more links but longer average path
distances between the disk and the server. For example,
a 16 × 16 × 16 torus might seem like a good topology be-
cause it is relatively low cost and is easy to assemble. How-
ever, this topology would have 4096 × 6/2 = 12288 links,
and the average distance from an edge to a desired node
would be 16/4+16/4+16/4= 12 hops. This would limit
the theoretical bandwidth to 1×12288/12 = 1024 Gb/s, or
128 GB/s at most, which might be insufficient to meet the
100 GB/s demand. Figure 6 shows the expected number
of hops for each network topology as well as the expected
load on each network link.

Our models have assumed that links are half-duplex. If
full-duplex links are used, individual links can double their
theoretical maximum bandwidth. However, this doubling
is only realized if the load on the link is the same in both
directions. For mesh and torus topologies the load in both
directions will depend on the location of the router nodes.
However, for butterfly and fat-tree topologies, the ability to
do full-duplex transmission is largely wasted because, for
large reads, data flows in only direction through the net-
work: from disks to routers. Large writes work similarly—
data flows in one direction only, from routers to disks.
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A prime consideration is the ability of individual con-
nections into the storage fabric to supply the necessary
bandwidth. For a 4096 node system supplying 100 GB/s,
we have assumed that 128 external connections would be
sufficient; certainly, 128 links at 10 Gb/s could indeed pro-
vide 100 GB/s of aggregate bandwidth. However, designs
in which individual nodes have relatively few links can-
not support such routers because the intra-fabric bandwidth
available to a router is too low to support an external link
of 10 Gb/s. For example, a two-dimensional fabric has four
ports per node; at 1 Gb/s/port, the total bandwidth available
to an external link is about 4 Gb/s, far less than the 10 Gb/s
capacity of the external link and insufficient to allow 128
such nodes to provide 100 GB/s to the outside world.

Figure 6 shows that the link bandwidth required by the
4-D, 5-D and 6-D configurations could be served by 1 Gb/s
interconnects, such as Gigabit Ethernet. Unfortunately, the
bandwidth needs of the 2-D and 3-D configurations require
the use of a faster interconnect, such as 10 Gigabit Ether-
net, to meet the 100 GB/s requirement of the overall sys-
tem. The cost of the necessary 10 Gb/s ports add $80M to
the 2-D configuration, and a whopping $100M to the 3-D
configuration.

Figures 6 and 7 make it clear that, although low-
dimensionality torii are attractive because of the low num-
ber of links they require, they cannot meet the 100 GB/s re-
quirement without resorting to more costly interconnects.
On the other hand, high-dimensionality hypercubes require
less bandwidth per link, yet have many links and require
switches with many ports. The 4-D and 5-D torii appear to
have the best combination of relatively low cost, acceptable
bandwidth on individual links and reasonable path lengths.
Compared to butterfly networks, the resiliency of the 4-D
and 5-D torii offset the 30% to 40% added cost.

The 6-D hypercube has the highest cost and highest ag-
gregate throughput performance. Dividing the cost by ag-
gregate throughput, as shown in Figure 8, shows that the
cost per GB/s of bandwidth is nearly identical for the but-
terfly and hypercube topologies. The 6-D hypercube be-
comes a cost effective choice for a large reliable system
with quality of service constraints.

5. Simulation Results

While analytic results show theoretical performance,
there are many real-world considerations that affect perfor-
mance. We simulated usage of the networks whose perfor-
mance was analyzed in Section 4, using a simple simulator
that modeled network traffic loads along the network links.
Each router between outside clients and disks made 0.5 MB
requests of randomly-selected data that induced load suffi-
cient to drive the overall system bandwidth to 100 GB/s.
Requests were routed through mesh, torus, and hypercube
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Figure 8. Cost per gigabyte per second
for different interconnection network topolo-
gies.

interconnection networks using dimensional routing [4];
routing in butterfly networks is fixed because there exists
only one route between requester and disk.

We generated a range of interconnection networks with
4096 nodes, including either 128 routers through which
clients would connect to the storage fabric; the remainder
of the nodes were storage nodes. The butterfly networks,
on the other hand, had 4096 nodes connected through a
switching fabric to 128 routers. The specific fabrics we
tested are listed in Table 1.

In our first cube-style networks (meshes, torii, and hy-
percubes), we connected external clients through routers
placed at regular locations within the network. This re-
sulted in very poor performance due to congestion near the
router nodes, as shown in Figure 9. A histogram of load
distribution on individual links in a 4×4×4×4×4×4 hy-
percube is shown in Figure 9(a). When routers were placed
in a regular arrangement, some links had bandwidths of
1.25–2.25Gb/s. Individual disks require about 25% of a
single 1 Gb/s link’s bandwidth and are not affected greatly
by requests that “pass through” the switch next to the disk.
Routers, on the other hand, require nearly the full band-
width of all the incoming connections. When routers are
adjacent, the bandwidth is greatest nearest the routers and
falls off further from the routers, resulting in overloaded
links in part of the fabric and underloaded links elsewhere.
Figure 9(a) shows that, in addition to overloading some
links, regular placement underloads most of the remain-
ing links—the histogram is shifted to the left relative to that
for random node placement. The cumulative distribution of
link load is shown in Figure 9(b); under regular placement,
about 5% of all links experience overload.

We addressed the problem of crowding by placing
routers randomly throughout the storage fabric. While this
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Figure 9. Distribution of load on links in a 4×
4 × 4 × 4 × 4 × 4 hypercube. Randomly-placed
router nodes improve the evenness of load
in the fabric.

did not decrease average path length, it dramatically re-
duced the congestion we noticed in our original network
designs, as Figure 9 shows. As a result, bandwidth was
spread more evenly throughout the storage fabric, reduc-
ing the maximum load on any given link. We believe that
it might be possible to further balance load by devising an
optimal placement; however, this placement is beyond the
scope of this paper.

6. Future Work

This paper merely scratches the surface of issues in
network design for petabyte-scale storage systems. Some
of the unanswered questions about this design can be an-
swered best by building an inexpensive proof of concept
system using commodity drives, gigabit networking, and
small-scale switches. This setup would allow us to verify
our models against a small system, providing some confi-
dence that the large systems we are modeling will perform
as expected.

As with many other computer systems, changes in the

ratios between disk bandwidth and network bandwidth will
also affect storage system design. For example, when
10 Gb/s network connections become inexpensive, it is
likely that designs with multiple disks per switch will be-
come feasible. Given the aggregate bandwidth limitations
using 1 Gb/s links, however, placing two or three disks per
switch will overload the network for most topologies.

Of course, standard issues such as protocol choice, stor-
age system network congestion, and reliability concerns are
relevant to systems in which storage is embedded in a net-
work fabric. However, other questions such as the place-
ment of connections into the network (edge or core), the
use of a few “shortcut” links to reduce dimensionality, and
other problems specific to dense interconnection networks
will be relevant to designs such as those presented in this
paper.

Perhaps the most important question, though, is whether
this design is applicable to commercial environments, in
which bandwidth is less crucial, as well as scientific com-
puting environments. If this design is a good fit to com-
mercial systems, it is likely that the “bricks” used to build a
storage fabric will become cheaper, allowing the construc-
tion of higher performance scientific computing storage
systems as well as faster, more reliable commercial stor-
age systems.

7. Conclusions

In this paper, we have introduced the concept of build-
ing a multiprocessor-style interconnection network solely
for storage systems. While this idea has been alluded to
in the past, our research shows the tradeoffs between dif-
ferent configurations and demonstrates that “storage fab-
rics” based on commodity components configured as torii
and hypercubes improve reliability as well as performance.
More specifically, the 4-D and 5-D torii appear to be rea-
sonable design choices for a 4096 node storage system ca-
pable of delivering 100 GB/s from 1 PB. Furthermore, these
designs become faster as the system grows, removing the
need to replace the entire storage system as capacity and
bandwidth demands increase. It is for these reasons that we
believe that storage network topologies as described in this
paper will become crucial to the construction of petabyte-
scale storage systems.
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Abstract

The object-based storage model, in which files are made up of one or more data objects stored on
self-contained Object-Based Storage Devices (OSDs), is emerging as an architecture for distributed
storage systems. The workload presented to the OSDs will be quite different from that of general-
purpose file systems, yet many distributed file systems employ general-purpose file systems as their
underlying file system. We present OBFS, a small and highly efficient file system designed for use
in OSDs. Our experiments show that our user-level implementation of OBFS outperforms Linux
Ext2 and Ext3 by a factor of two or three, and while OBFS is 1/25 the size of XFS, it provides only
slightly lower read performance and 10%–40% higher write performance.

1. Introduction

Object-based storage systems represent files as sets of objects stored on self-contained Object-Based
Storage Devices (OSDs). By distributing the objects across many devices, these systems have the
potential to provide high capacity, throughput, reliability, availability and scalability. We are de-
veloping an object-based storage system with a target capacity of 2 petabytes and throughput of
100 gigabytes per second. In this system as, we expect, in many others, files will be striped across
OSDs. The stripe unit size of the system will determine the maximum object size and will be
the most common object size in the system. Because files will generally consist of many objects
and objects will be distributed across many OSDs, there will be little locality of reference within
each OSD. The workload presented to the OSDs in this system will be quite different from that of
general-purpose file systems. In object-based systems that do not employ this architecture we can
still expect that files will be distributed across multiple objects, objects will be distributed across
multiple OSDs, and there will be little locality of reference. Even so, many distributed file systems
employ general-purpose file systems as their underlying file system.

We present OBFS, a very small, highly efficient object-based file system developed for use in OSDs
in large-scale distributed storage systems. The basic idea of OBFS is to optimize the disk layout
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based on our knowledge of the workload. OBFS uses two block sizes: small blocks, equivalent
to the blocks in general-purpose file systems, and large blocks, equal to the maximum object size,
to greatly improve the object throughput while still maintaining good disk utilization. OBFS uses
regions to collocate blocks of the same size, resulting in relatively little fragmentation as the file
system ages. Compared with Linux Ext2 and Ext3 [3, 28], OBFS has better data layout and more
efficiently manages the flat name space exported by OSDs. Although developed for a workload
consisting mostly of large objects, OBFS does well on a mixed workload and on a workload con-
sisting of all small objects. Thus, in addition to being highly suitable for use in high-performance
computing environments where large files (and hence objects) dominate, we believe that it may also
prove effective in general-purpose computing environments where small files dominate.

Our results show that our user-level implementation of OBFS outperforms Linux kernel implemen-
tations of Ext2 and Ext3 by a factor of 2 to 3, regardless of the object size. Our user-level im-
plementation of OBFS is a little slower than a kernel implementation of XFS [19, 27] when doing
object reads, but has 10% to 40% better performance on object writes. We expect the performance
to improve further once we have fully implemented OBFS in the kernel to avoid extra buffer copies.

OBFS is significantly smaller than Linux XFS, using only about 2,000 lines of code compared with
over 50,000 lines of code in XFS. This factor of 25 size difference and the corresponding simplicity
of OBFS make OBFS easy to verify, maintain, modify, and port to other platforms. OBFS also
provides strong reliability guarantees in addition to high throughput and small code size; the disk
layout of OBFS allows it to update metadata with very low overhead, so OBFS updates metadata
synchronously.

2. Background

A new generation of high-performance distributed file systems are being developed, motivated by
the need for ever greater capacity and bandwidth. These file systems are built to support high-
performance computing environments which have strong scalability and reliability requirements.
To satisfy these requirements, the functionality of traditional file systems has been divided into two
separate logical components: a file manager and a storage manager. The file manager is in charge
of hierarchy management, naming and access control, while the storage manager handles the actual
storage and retrieval of data. In large-scale distributed storage systems, the storage manager runs on
many independent storage servers.

Distributed object-based storage systems, first used in Swift [6] and currently used in systems such
as Lustre [4] and Slice [1], are built on this model. However, in object-based systems the storage
manager is an object-based storage device (OSD or OSD) [30], which provides an object-level
interface to the file data. OSDs abstract away file storage details such as allocation and scheduling,
semi-independently managing all of the data storage issues and leaving all of the file metadata
management to the file manager.

In a typical instance of this architecture, a metadata server cluster services all metadata requests,
managing namespace, authentication, and protection, and providing clients with the file to object
mapping. Clients contact the OSDs directly to retrieve the objects corresponding to the files they
wish to access. One motivation behind this new architecture is to provide highly-scalable aggregate
bandwidth by directly transferring data between storage devices and clients. It eliminates the file
server as a bottleneck by offloading storage management to the OSDs [8] and enables load balanc-
ing and high performance by striping data from a single file across multiple OSDs. It also enables
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high levels of security by using cryptographically secured capabilities and local data security mech-
anisms.

Much research has gone into hierarchy management, scalability, and availability of distributed file
systems in projects such as AFS [18], Coda [11], GPFS [22], GFS[26] and Lustre [4], but relatively
little research has been aimed toward improving the performance of the storage manager. Because
modern distributed file systems may employ thousands of storage devices, even a small inefficiency
in the storage manager can result in a significant loss of performance in the overall storage system.
In practice, general-purpose file systems are often used as the storage manager. For example, Lustre
uses the Linux Ext3 file system as its storage manager [4]. Since the workload offered to OSDs may
be quite different from that of general-purpose file systems, we can build a better storage manager
by matching its characteristics to the workload.

File systems such as Ext2 and Ext3 are optimized for general-purpose Unix environments in which
small files dominate and the file sizes vary significantly. They have several disadvantages that limit
their effectiveness in large object-based storage systems. Ext2 caches metadata updates in memory
for better performance. Although it flushes the metadata back to disk periodically, it cannot provide
the high reliability we require. Both Ext3 and XFS employ write-ahead logs to update the metadata
changes, but the lazy log write policy used by both of them can still lose important metadata (and
therefore data) in some situations.

These general-purpose file systems trade off the reliability for better performance. If we force them
to synchronously update object data and metadata for better reliability, their performance degrades
significantly. Our experimental results shows that in synchronous mode, their write throughput is
only several MB/second. Many general-purpose file systems such as Ext2 and Ext3 use flat directo-
ries in a tree-like hierarchy, which results in relatively poor searching performance for directories of
more than a thousand objects. XFS uses B+-Trees to address this problem. OBFS uses hash tables
to obtain very high performance directory operations on the flat object namespace.

In our object-based storage system as, we expect, in many others, RAID-style striping with par-
ity and/or replication is used to achieve high performance, reliability, availability, and scalability.
Unlike RAID, the devices are semi-autonomous, internally managing all allocation and scheduling
details for the storage they contain. The devices themselves may use RAID internally to achieve
high performance. In this architecture, each stripe unit is stored in a single object. Thus, the maxi-
mum size of the objects is the stripe unit size of the distributed file system, and most of the objects
will be this size. At the OSD level, objects typically have no logical relationship, presenting a flat
name space. As a result, general-purpose file systems, which are usually optimized for workloads
exhibiting relatively small variable-sized files, relatively small hierarchical directories, and some
degree of locality, do not perform particularly well under this workload.

3. Assumptions and Design Principles

Our OBFS is designed to be the storage manager on each OSD as part of a large-scale distributed
object-based storage system [13], which is currently being developed at the University of California,
Santa Cruz, Storage System Research Center (SSRC). Our object-based storage system has three
major components, the Metadata Server Cluster (MDSC), the Client Interface (CI), and the Storage
Managers (SMs). File system functionality is partitioned among these components. The MDSC
is in charge of file and directory management, authentication and protection, distributing work-
load among OSDs, and providing redundancy and failure recovery. The CI, running on the client
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machines, provides the file system API to the application software running on the client nodes, com-
municates with the MDSC and SMs, and manages a local file system cache. The SMs, running on
the OSDs, provide object storage and manage local request scheduling and allocation.

The operation of the storage system is as follows: Application software running on client machines
make file system requests to the CIs on those machines. The CIs preprocess the requests and query
the MDSC to open the files and get information used to determine which objects comprise the files.
The CIs then contact the appropriate SMs to access the objects that contain the requested data, and
provide that data to the applications.

In our system, objects are limited by the stripe unit size of the system. Thus, in contrast to a
file, whose size may vary from bytes to terabytes, the size variance of an object is much smaller.
Moreover, the delayed writes in the file cache at the client side will absorb most small writes and
result in relatively large object reads and writes. We provide a more detailed analysis of the object
workload characteristics in Section 4.

To enable parallel I/O, files are striped into fixed size objects and spread across different OSDs.
The specific OSDs are selected based on the overall workload distribution intended to avoid ”hot
spots” and increase potential parallelism [13]. From the viewpoint of a single OSD, incoming object
accesses will be relatively random. Thus inter-object locality will be insignificant.

Most file systems cache writes for fast response, to coalesce many small writes into fewer larger
ones, and to allow the file system to exploit locality of reference within the request stream. In
object-based storage systems, most asynchronous writes will therefore be cached by the client. As a
result, almost all of the writes to the OSDs will be synchronous. Thus, the SMs should probably not
cache incoming writes in the OSDs. Furthermore, because logically contiguous data is distributed
across many objects in many different OSDs, there is no locality of reference to be leveraged by
caching writes of different objects.

Another caching-related concern arises due to the black-box nature of the OSDs. Because the OSDs
provide a very high-level interface to the data, caching can cause the storage system as a whole to
believe that the data has been saved, while data has actually been lost due to power failure or other
hardware failures. While this may be addressable, we have not addressed it in this version of OBFS.

On each OSD there is a complete lack of information about relationships between objects. Thus
a flat name space is used to manage the objects on each OSD. Because hundreds of thousands
of objects might coexist on a single OSD, efficient searching in this flat name space is a primary
requirement for the SMs.

As mentioned above, most of the incoming write requests will be synchronous. A client expects the
data to be on the permanent storage when it commits its writes. This requires the OSDs to flush
the objects to permanent storage before committing them. This also means the metadata of those
objects should also be kept safely. In effect, OSDs in object-based storage systems are like disks in
traditional storage systems, and file systems expect disks to actually store committed write requests
rather than caching them.
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Figure 1. Data distribution in a large high-performance distributed storage system (data
courtesy of LLNL)

4. Workload Characteristics

Very large-scale distributed file systems may exhibit very different performance characteristics than
general-purpose file systems. The total volume of a large-scale distributed file system may range
from several terabytes to several petabytes, orders of magnitude larger than typical general-purpose
file systems. The average file size in such a distributed file system may also be much larger than that
of current general-purpose file systems. Although our intent is to develop a flexible and general file
system applicable in many different situations, one of our performance goals is to handle workloads
encountered in high-performance computing environments with tens or hundreds of thousands of
processors simultaneously accessing many files in many directories, many files in a single directory,
or even a single file. These environments place extremely high demands on the storage system.

Figure 1 shows the data distribution across files in a high-performance distributed file system from
Lawrence Livermore National Laboratory (LLNL). Figure 1(a) shows the file size distribution for
the more than 1.5 million files in this system. Most of the files are larger than 4 KB and the majority
of all files are distributed between 32 KB and 8 MB. Those files that are smaller than 4 KB (a typical
block size for a general-purpose file system) only account for a very small portion of the total files.
However, almost all of the disk space is occupied by files larger than 4 MB and the majority of all
bytes are in files between 4 MB and 1 GB, as shown in Figure 1(b). The total number of bytes
in files smaller than 256 KB is insignificant. Though the files larger than 1 GB are only a small
percentage of the files, the total number of bytes in such files account for more than 15% of the
bytes in the system.

The file access pattern of such systems is also different from that of a typical general-purpose file
system. In the LLNL workload, most data transferred between the processors and the file system
are in several megabyte chunks. Most files are accessed simultaneously by hundreds of processors.
and instead of flushing dirty data directly back to the storage device, each processor caches the data
in its local memory and only writes the data once the buffer is full.

Object-based storage may be used for smaller file systems as well. Systems like those traced by
Roselli, et al. [20] have many small files; in the systems they studied, 60–70% of the bytes trans-
ferred were from files smaller than 512 KB. Clearly, an OSD file system must also be able to
efficiently handle workloads composed primarily of small objects.
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For the OSDs to achieve the high throughput required of the system and to fully take advantage
of the object-based storage model, our system stripes file data across the OSDs. This is a very
compelling choice, analogous to that of earlier systems such as Swift [6] and Zebra [9], and we
believe that this will be an architecture of choice in large-scale object-based storage systems. In
such systems, each object stored on an OSD will be a stripe unit (or partial stripe unit) of data from
a file.

The system stripe unit size depends on the design requirements of the individual system. Stripe
units that are too small will decrease the throughput of each OSD while stripe units that are too
large will decrease the potential parallelism of each file. Assuming a stripe unit size of 512 KB,
large files will be divided into several 512 KB objects and files smaller than 512 KB will be stored
in a single object. Consequently, no object in the system will ever exceed the system stripe unit
size. In the LLNL workload we estimate that about 85% of all objects will be 512 KB and 15% of
all objects will be smaller than 512 KB. We will refer to objects that are the same size as the system
stripe unit size as large objects and the rest as small objects. Workstation workloads [20] will likely
have more small objects and fewer large objects.

Because the object-based storage system is expected to spread the objects evenly across all of the
OSD devices, the object size distribution in the workload of a single OSD device will be the same
as that of the larger storage system. Thus, a single OSD device under the LLNL workload should
expect that 85% of incoming objects are large objects and the rest are small objects. Since files are
distributed across many OSDs and directory hierarchies are managed above the OSD level, there
is no inter-object locality that can be exploited in the OSDs. The workload of OSDs in this type
of system will be dominated by large fixed-size objects exhibiting no inter-object locality. Under
workstation workloads, in contrast, the object size distribution will be closer to 25% large objects
and 75% small objects. An OSD file system should be able to handle either type of workload.

5. Design and Implementation

As described in Section 4, the expected workload of our OSDs is composed of many objects whose
sizes range from a few bytes up to the file system stripe unit size. Therefore, OBFS needs to
optimize large object performance to provide substantially higher overall throughput, but without
overcommitting resources to small objects. Simply increasing the file system block size can provide
the throughput needed for large objects, but at the cost of wasted storage space due to internal
fragmentation for small objects. For the LLNL workload, more than 10% of the available storage
space would be wasted if 512 KB blocks are used, while less than 1% of the space would be lost if
4 KB blocks are used. In a 2 PB storage system, this 9% difference represents about 18 TB. The
situation is even worse for a workstation file system, where 512 KB blocks would waste more than
50% of the space in such a system.

To use large blocks without wasting space, small objects must be stored in a more efficient way.
OBFS therefore employs multiple block sizes and uses regions, analogous to cylinder groups in
FFS [15], to keep blocks of the same size together. Thus, the read/write performance of large
objects can be greatly improved by using very large blocks, while small objects can be efficiently
stored using small blocks.

Another important feature of OBFS is the use of a flat name space. As the low-level storage manager
in an object-based distributed file system, OBFS has no information about the logical relationship
among objects. No directory information is available and no useful locality information is likely to
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be available. Note that in a small system where an OSD may hold several objects of a file, some
locality information may available, but this does not extend to multiple files in the same directory or
other tidbits that are useful to general-purpose file systems. Many general-purpose file systems such
as Linux Ext2 are extremely inefficient in managing very large directories due to the fact that they
do linear search, resulting in O � n � performance on simple directory operations. To avoid this, OBFS
uses hash tables (like Ext3 [28]) to organize the objects and achieve much higher performance on
directory operations.

5.1. Regions and Variable-Size Blocks

The user-level implementation of OBFS separates the raw disk into regions. As shown in Figure 2,
regions are located in fixed positions on the disk and have uniform sizes. All of the blocks in a region
have the same size, but the block sizes in different regions may be different. The block size in a free
region is undefined until that region is initialized. Regions are initialized when there are insufficient
free blocks in any initialized region to satisfy a write request. In this case, OBFS allocates a free
region and initializes all of its blocks to the desired block size. When all of the blocks in a used
region are freed, OBFS returns the region to the free region list.

Although our region policy supports as many different block sizes as there are regions, too many
different block sizes will make space allocation and data management excessively complicated.
In our current implementation, OBFS uses two block sizes: small and large. Small blocks are
4 KB, the logical block size in Linux, and large blocks are 512 KB, the system stripe unit size and
twice the block size of GPFS (256 KB). Those regions that contain large blocks are called large
block regions and those regions that contain small blocks are called small block regions. With this
strategy, large objects can be laid out contiguously on disk in a single large block. The throughput of
large objects is greatly improved by the reduction in seek time and reduced metadata operations that
are inherent in such a design. Only one disk seek is incurred during the transfer of a large object.
OBFS eliminates additional operations on metadata by removing the need for indirect blocks for
large objects. Dividing the file system into regions also reduces the size of other FS data structures
such as free block lists or maps and thus make the operations on those data structures more efficient.

This scheme reduces file system fragmentation, avoids unnecessary wasted space and more effec-
tively uses the available disk bandwidth. By separating the large blocks in different regions from the
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small blocks, OBFS can reserve contiguous space for large objects and prevent small objects from
using too much space. Region fragmentation will only become a problem in the rare case that the
ratio of large to small objects changes significantly during the lifetime of the system, as described
in Section 5.6.

Higher throughput in OBFS does not come at the cost of wasted disk space. Internal fragmentation
in OBFS is no worse than in a general-purpose Unix file system because the small block size in
OBFS is the same as the block size in most Unix file systems. Large blocks do not waste much space
because they are only used for objects that will fill or nearly fill the blocks. The only wasted space
will be due to objects stored in large blocks that are nearly, but not quite, as large as a stripe unit.
This can be limited with a suitable size threshold for selecting the block size to use for an object.
One minor complication can occur if an object starts small and then grows past this threshold. Our
current implementation recopies the object into a large block when this occurs. Although this sounds
expensive, it will happen rarely enough (due to aggressive write coalescing in the client caches) that
it does not have a significant impact on system performance, and the inter-region locality of the
small blocks makes this a very efficient operation.

5.2. Object Metadata

Object metadata, referred as an onode, is used to track the status of each object. Onodes are preal-
located in fixed positions at the head of small block regions, similar to the way inodes are placed in
cylinder groups in FFS [15]. In large block regions, shown in Figure 3, onodes are packed together
with the data block on the disk, similar to embedded inodes [7]. This allows for very low overhead
metadata updates as the metadata can be written with the corresponding data block.

Figure 3 shows that each onode has a unique 32-bit identifier consisting of two parts: a 16 bit region
identifier and a 16 bit in-region object identifier. If a region occupies 256 MB on disk, this scheme
will support OSDs of up to 16 TB, and larger OSDs are possible with larger regions. To locate
a desired object, OBFS first finds the region using the region identifier and then uses the in-region
object identifier to index the onode. This is particularly effective for large objects because the object
index points directly to the onode and the object data, which are stored contiguously.

In the current implementation, onodes for both large and small objects are 512 bytes, allowing
OBFS to avoid using indirect blocks entirely. The maximum size of a small object will always
be less than the stripe unit size, which is 512 KB in our design. Because the OBFS layout policy
assigns objects to a single region, we can use the relative address to track the blocks. Assuming the
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region size is 256 MB and the small block size is 4 KB, there will be fewer than 216 small blocks in
a region, allowing a two-byte addresses to index all of the blocks in the region. In the worse case,
a small object will be a little smaller than 512 KB, requiring 128 data blocks. Thus, the maximum
amount of space that may be needed to index the small blocks in an object is 256 bytes, which can
easily fit into a 512 byte onode.

5.3. Object Lookup

Given an object identifier, we need to retrieve the object from the disk. In a hierarchical name
space, data lookup is implemented by following the path associated with the object to the destination
directory and searching (often linearly) for the object in that directory. In a flat name space, linear
search is prohibitively expensive, so OBFS uses a hash table, the Object Lookup Table (OLT), to
manage the mapping between the object identifier and the onode identifier. Each valid object has an
entry in the OLT that records the object identifier and the corresponding onode identifier. The size
of the OLT is proportional to the number of objects in the OSD: with 20,000 objects residing in an
OSD, the OLT requires 233 KB. For efficiency, the OLT is loaded into main memory and updated
asynchronously.

Each region has a region head which stores information about the region, including pointers to the
free block bitmap and the free onode bitmap. All of the region heads are linked into the Region
Head List (RHL). On an 80 GB disk, the RHL occupies 8 MB of disk space. Like the OLT, the RHL
is loaded into memory and updated asynchronously. After obtaining an onode identifier, OBFS
searches the RHL using the upper 16 bits of the onode identifier to obtain the corresponding region
type. If the onode belongs to a large block region, the object data address can be directly calculated.
Otherwise, OBFS searches the in-memory onode cache to find that onode. A disk copy of the onode
will be loaded into the onode cache if the search fails.

5.4. Disk Layout Policy

The disk layout policy of OBFS is quite simple. For each incoming request, OBFS first decides
what type of block(s) the object should use. If the object size is above the utilization threshold of
the large blocks, a large block is assigned to the object; otherwise, it uses small blocks.

For those objects that use large blocks, OBFS only needs to find the nearest large-block region
that contains a free block, mark it as used, and write the object to that block. For objects that use
small blocks, an FFS-like allocation policy is employed. OBFS searches the active region list to
find the nearest region that has enough free small blocks for the incoming object. After identifying
a region with sufficient space, OBFS tries to find a contiguous chunk of free blocks that is large
enough for the incoming object. If such a chunk of blocks is not available, the largest contiguous
chunk of blocks in that region is assigned to the object. The amount of space allocated in this step
is subtracted from the object size, and the process is repeated until the entire object is stored within
the region. If no region has the desired number and type of free blocks, the nearest free region will
be initialized and put into the active region list. The incoming object will then be allocated to this
new region.

The OBFS data allocation policy guarantees that each of the large objects is allocated contiguously
and each of the small objects is allocated in a single region. No extra seeks are needed during a
large object transfer and only short seeks are needed to read or write the small objects, no matter
how long the file system has been running. Compared with a general-purpose file system, OBFS
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is much less fragmented after running for a long time, minimizing performance degradation as the
system ages.

5.5. Reliability and Integrity

As mentioned in section 5.3, OBFS asynchronously updates important data structures such as the
OLT and the RHL to achieve better performance. In order to guarantee system reliability, OBFS
updates some important information in the onodes synchronously. If the system crashes, OBFS
will scan all of the onodes on the disk to rebuild the OLT and the RHL. For each object, the object
identifier and the region identifier are used to assemble a new entry in the OLT. The block addresses
for each object are then used to rebuild each region free block bitmap. Because the onodes are
synchronously updated, we can eventually rebuild the OLT and RHL and restore the system. As
mentioned above, OBFS updates metadata either without an extra disk seek or with one short disk
seek. In so doing, it keeps the file system reliable and maintain system integrity with very little
overhead.

5.6. Region Cleaning

Since OBFS uses regions to organize different types of blocks, one potential problem is that there
will be no free regions and no free space in regions of the desired type. Unlike LFS [21], which
must clean segments on a regular basis, OBFS will never need cleaning unless the ratio between
large and small objects changes significantly over time on an OSD which has been nearly full. This
can only happen when the object size characteristic of the workload changes significantly when the
file system is near its capacity. We do not expect this to happen very often in practice. However, if it
happens, it can result in many full regions of one type, many underutilized regions of the other type,
and no free regions. In this situation, the cleaner can coalesce the data in the underutilized regions
and create free regions which can be used for regions of desired type.

If all of the regions are highly utilized, cleaning will not help much: the disk is simply full. Low
utilization regions can only be produced when many objects are written to disk and then deleted,
leaving “holes” in regions. However, unlike in LFS, these holes are reused for new objects without
the need for cleaning. The only time cleaning is needed is when all of the holes are in the wrong
kind of region e.g., the holes are in small block regions, and OBFS is trying to write a large block.
This situation only occurs when the ratio between large objects and small objects changes. In our
experiments, we only observed the need for the cleaner when we artificially changed the workload
ratios on a nearly full disk.

Because cleaning is rarely, if ever, necessary, it will have a negligible impact on OBFS performance.
However, cleaning can be used to improve file system performance by defragmenting small-block
regions to keep blocks of individual objects together. This process would copy all used blocks of
a region to a free region on the disk, sorting the blocks as it goes. Because this would occur on a
region-by-region basis and because a new region will always have enough free space for all of the
blocks in an old region, it would be trivial to implement. The system need never do this, however.

6. OBFS Performance

We compared the performance of OBFS to that of Linux Ext2, Ext3 and XFS. Ext2 is a widely-used
general-purpose file system. Ext3 is used by Lustre for object storage and has the same disk layout
as Ext2 but adds a journal for reliability. XFS is a modern high-performance general-purpose file
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Capacity 80 GB
Controller Ultra ATA/133
Track-to-track seek 0.8 ms
Average seek 8.5 ms
Rotation speed 7200 RPM
Sustained transfer rate 24.2–44.4 MB/s

Table 1. Specifications of the Maxtor D740X-6L disk used in the experiments

system that uses B-trees and extent-based allocation. While Ext2, Ext3, and XFS run as in-kernel
file systems, the version of OBFS used in these experiments is a user-level file system. An in-kernel
implementation of OBFS would take advantage of the very effective caching provided by the Linux
kernel, but our user-level implementation cannot. Thus, in order to allow for a fair comparison, we
executed the following experiments with the system buffer cache bypassed: all of the file systems
were mounted using the “-o sync” parameter, which forced the system buffer cache to use a write-
through policy. The results generated evaluates disk layout policies of different file systems. With
caching enabled, all three file systems will achieve higher performance. We expect the performance
change of OBFS to be comparable to those of XFS, Ext2, and Ext3.

6.1. Experimental Setup

All of the experiments were executed on a PC with a 1 GHZ Pentium III CPU and 512 MB of RAM,
running Red Hat Linux, kernel version 2.4.0. To examine the performance of the file systems with
minimal impact from other operating system activities, we dedicated an 80 GB Maxtor D740X-6L
disk (see Table 1) to the experiments. This disk was divided into multiple 8 GB partitions. The first
partition was used to install file systems and run experiments. The rest were used to backup aged file
system images. We used aged file systems to more accurately measure the long-term performance
of the file systems. For each experiment, we copied an aged file system to the first partition of
the disk, unmounted the disk and rebooted Linux to clean the buffer cache, then mounted the aged
partition to run the benchmarks. We repeated these steps three times and took the average of the
performance numbers obtained.

Smith, et al. [25] used file system snapshots and traces to approximate the possible activities in file
systems. No object-based storage system snapshots are currently available so we used the simplest
approach: generate 200,000 to 300,000 randomly distributed create and delete requests and feed
these requests to a new file system. The create/delete ratio was dynamically adjusted based on the
disk usage, which guaranteed that it neither filled nor emptied the available disk space.

Because our user-level implementation of OBFS bypasses the buffer cache, all three file systems
were forced to use synchronous file I/O to allow for a fair comparison of the performance. Ext2
uses asynchronous metadata I/O to achieve high throughput even if synchronous file I/O is used, so
we mounted the partitions in synchronous mode to force them to always flush the data in the buffer
cache back to disk.

The benchmarks we used consisted of semi-random sequences of object requests whose character-
istics were derived from the LLNL workload described in Section 4. On average, 80% of all objects
were large objects (512 KB). The rest were small objects whose size was uniformly distributed
between 1 KB and 512 KB. To examine the performance of the various file system, we generated
two kinds of benchmarks: microbenchmarks and macrobenchmarks. Our microbenchmarks each



294

Benchmark I Benchmark II
# of ops(total size) # of ops(total size)

Reads 16854 (7.4GB) 4049 (1.8GB)
Writes 4577 (2.0GB) 8969 (4.0GB)
Rewrites 4214 (1.8GB) 8531 (3.8GB)
Deletes 4356 (1.9GB) 8147 (3.9GB)
Sum 30001 (13.1GB) 29696 (12.5GB)

Table 2. Benchmark parameters
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Figure 4. Performance on a workload of mixed-size objects.

consisted of 10,000 requests of a single request type—read, write, or rewrite—and allowed us to ex-
amine the performance of the file systems on that request type. Our macrobenchmarks consisted of
synthetic workloads composed of create, read, rewrite, and delete operations in ratios determined by
the workload mentioned above. These allowed us to examine the performance of the file systems on
the expected workload. We used two different macrobenchmarks, Benchmark I and Benchmark II,
whose parameters are listed in table 2. Benchmark I is a read-intensive workload in which reads
account for 56% of all requests and the total size of the read requests is around 7.4 GB. The writes,
rewrites, and deletes account for 15.3%, 14.0%, and 14.5% of the requests. In Benchmark II, reads
account for 13.6% of the requests and writes, rewrites, and deletes account for 29.8%, 28.4%, and
27.1%.

6.2. Results

Figure 4 shows the performance of Ext2, Ext3, XFS, and OBFS on a mixed workload consisting of
80% large objects and 20% small objects1. As seen in Figure 4(b), OBFS exhibits very good write
performance, almost twice that of Ext2 and Ext3 and 10% to 20% better than XFS. The large block
scheme of OBFS contributes a lot to the strong write performance. With large blocks, contiguous
space has been reserved for the large objects, allowing large objects to be written with only one
disk seek. Because OBFS uses regions to organize large and small blocks, limiting the amount of
external fragmentation, the performance of OBFS remains good as disk usage increases. At the
same time, the performance of Ext2 and Ext3 drops significantly due to the insufficient availability
of large contiguous regions, as seen in Figures 4(b), 5(b), and 6(b).

1Note that in all of the microbenchmark graphs write performance is displayed starting at 0% disk utilization but
because reads and rewrites cannot be done on an empty disk we chose to start those experiments at 25% utilization.
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Figure 5. Performance on a workload of large objects.
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Figure 6. Performance on a workload of small objects.

OBFS outperforms Ext2 and Ext3 by nearly 3 times, but is about 10% slower than XFS, as Fig-
ure 4(a) shows. We suspect that a more optimized implementation of XFS contributes to its slightly
better read performance. As seen in Figure 4(c), the rewrite performance of OBFS beats that of
Ext2 and Ext3 by about 3 times, and beats XFS by about 20–30%. The poor performance of Ext2
and Ext3 in both read and rewrite can be explained by their allocation policies and small blocks.
XFS uses extents rather than blocks to organize files, so most files can get contiguous space. This
results in excellent performance in both read and write. However, OBFS still shows slightly better
performance on object rewrite.

Figure 5 shows the performance of the four file systems on large objects and Figure 6 shows the
performance on small objects. Figure 5 is almost the same as Figure 4 because large objects domi-
nate the mixed workload of Figure 4. In Figure 6, we see that OBFS meets the performance of XFS,
almost triples the performance of Ext2 and Ext3 when doing reads and rewrites, and exceeds the
performance of all three when doing creates.

The benchmark results are shown in Figures 7 and 8. As described above, Benchmark I is a read-
intensive workload and Benchmark II is a write-intensive workload. Notice that in our benchmarks,
XFS beats both Ext2 and Ext3 by a large margin in all cases; this differs from other benchmark
studies [5] that found that Ext2 and XFS have comparable performance. There are three factors
in our experiments that favor XFS over Ext2 and Ext3. First, our benchmarks include many large
objects, which benefit from XFS extent-based allocation, especially when disk utilization is high.
Second, while other benchmarks used fresh disks, our benchmarks use disks subjected to long-term
aging [25] to reflect more realistic scenarios. After aging, the performance of Ext2 and Ext3 drops
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Figure 7. Performance under Benchmark I.

dramatically after aging due to disk fragmentation, while XFS maintains good performance because
of its extent-based allocation policy. Third, in our object-based benchmarks, we assume a flat name
space in which all objects are allocated in the root directory in all file systems. The linear search
of directories used by Ext2 and Ext3 performs poorly when the number of objects scales to tens of
thousands. XFS uses B+trees to store its directories, ensuring fast name lookup even in very large
directories.

Ext2 and Ext3 outperform OBFS when the disk is nearly empty, as shown in Figures 7(a) and 8(a).
This is due in part to the significant likelihood that an object will be in the buffer cache because
of the low number of objects that exist in a nearly empty disk. For example, an 8 GB partition at
10% utilization has only 800 MB of data. With 512 MB of main memory, most objects will be
in memory and Linux Ext2, Ext3 and XFS reads will proceed at memory speeds while our user-
level implementation of OBFS gains no advantage from the buffer cache and must therefore always
access the disk. However, as disk usage increases, this effect is minimized and Ext2 and Ext3
read performance decreases rapidly while OBFS performance remains essentially constant. The net
result is that OBFS read performance is two or three times that of Ext2 and Ext3. OBFS is still
about 10% slower than XFS on reads, similar to the results from earlier read microbenchmarks.
OBFS outperforms all three other file systems on writes, however, as Figures 7(b) and 8(b) show.
For writes, OBFS is 30–40% faster than XFS and 2–3 times faster than Ext3. Overall, OBFS and
XFS are within 10% of each other on the two macrobenchmarks, with one file system winning each
benchmark. OBFS clearly beats both Ext2 and Ext3, however, running three times faster on both
benchmarks.

Although our macrobenchmarks focused on large-object performance, Figure 6 shows that OBFS
meets or exceeds the performance of the other file systems on a workload consisting entirely of
small objects, those less than 512 KB. OBFS doubles or triples the performance of Ext2 and Ext3
and matches that of XFS on reads and rewrites and exceeds it by about 25% on writes. As OBFS
also does well on large objects, we conclude that it is as well suited to general-purpose object-
based storage system workloads as it is to terascale high-performance object-based storage system
workloads.

7. Related Work

Many other file systems have been proposed for storing data on disk; however, nearly all of them
have been optimized for storing files rather than objects. The Berkeley Fast File System (FFS) [15]
and related file systems such as Ext2 and Ext3 [28] are widely used today. They all try to store
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Figure 8. Performance under Benchmark II.

file data contiguously in cylinder groups—regions with thousands of contiguous disk blocks. This
strategy can lead to fragmentation so techniques such as extents and clustering [16, 24] are used
to group blocks together to decrease seek time. Analysis [23, 24] has shown that clustering can
improve performance by a factor of two or three, but it is difficult to find contiguous blocks for
clustered allocation in aged file systems.

Log-structured file systems [21] group data by optimizing the file system for writes rather than reads,
writing data and metadata to segments of the disk as it arrives. This works well if files are written
in their entirety, but can suffer on an active file system because files can be interleaved, scattering a
file’s data among many segments. In addition, log-structured file systems require cleaning, which
can reduce overall performance [2].

XFS [19, 27] is a highly optimized file system that uses extents and B-trees to provide high perfor-
mance. This performance comes at a cost: the file system has grown from 50,000 to nearly 200,000
lines of code, making it potentially less reliable and less attractive for commodity storage devices
because such devices cannot afford data corruption due to file system errors. In addition, porting
such a file system is a major effort [19].

Gibson, et al. have proposed network-attached storage devices [8], but spent little time describing
the internal data layout of such devices. WAFL [10], a file system for network-attached storage
servers that can write data and metadata to any free location, is optimized for huge numbers of
small files distributed over many centrally-controlled disks.

Many scalable storage systems such as GPFS [22], GFS [26], Petal [12], Swift [6], RAMA [17],
Slice [1] and Zebra [9] stripe files across individual storage servers. These designs are most similar
to the file systems that will use OSDs for data storage; Slice explicitly discusses the use of OSDs to
store data [1]. In systems such as GFS, clients manage low-level allocation, making the system less
scalable. Systems such as Zebra, Slice, Petal, and RAMA leave allocation to the individual storage
servers, reducing the bottlenecks; such file systems can take advantage of our file system running
on an OSD. In GPFS, allocation is done in large blocks, allowing the file system to guarantee few
disk seeks, but resulting in very low storage utilization for small files.

Existing file systems must do more than allocate data. They must also manage large amounts of
metadata and directory information. Most systems do not store data contiguously with metadata,
decreasing performance because of the need for multiple writes. Log-structured file systems and
embedded inodes [7] store metadata and data contiguously, avoiding this problem, though they still
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suffer from the need to update a directory tree correctly. Techniques such as logging [29] and soft
updates [14] can reduce the penalty associated with metadata writes, but cannot eliminate it.

8. Conclusions

Object-based storage systems are a promising architecture for large-scale high-performance dis-
tributed storage systems. By simplifying and distributing the storage management problem, they
provide both performance and scalability. Through standard striping, replication, and parity tech-
niques they can also provide high availability and reliability. However, the workload characteristics
observed by OSDs will be quite different from those of general purpose file systems in terms of size
distributions, locality of reference, and other characteristics.

To address the needs of such systems, we have developed OBFS, a very small and highly efficient
file system targeted specifically for the workloads that will be seen by these object-based storage
devices. OBFS currently uses two block sizes: small blocks, roughly equivalent to the blocks in
general purpose file systems, and large blocks, equal to the maximum object size. Blocks are laid
out in regions that contain both the object data and the onodes for the objects. Free blocks of the
appropriate size are allocated sequentially, with no effort made to enforce locality beyond single-
region object allocation and the collocation of objects and their onodes.

At present, we have tested OBFS as a user-level file system. Our experiments show that the through-
put of OBFS is two to three times that of Linux Ext2 and Ext3, regardless of the object size. OBFS
provides slightly lower read performance than Linux XFS, but 10%–40% higher write performance.
At a fraction of the size of XFS—2,000 lines of code versus over 50,000 for XFS—OBFS is both
smaller and more efficient, making it more suitable for compact embedded implementations. Ulti-
mately, because of its small size and simplicity, we expect that it will also prove to be both more
robust and more maintainable than XFS, Ext2, or Ext3.

Finally, we successfully implemented a kernel-level version of the OBFS file system in about three
person-weeks. The short implementation time was possible because of OBFS’s simplicity and very
compact code. At present the performance of our in-kernel implementation does not match that of
our user-level implementation because our carefully managed large blocks get broken into small
blocks by the Linux buffer management layer, as encountered by the XFS developers. We intend to
rewrite the buffer management code, as they did, to avoid this problem. With this change, we expect
the in-kernel OBFS performance to exceed that of the user-level implementation, further solidifying
OBFS’s advantage over general-purpose file systems for use in object-based storage devices.
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Abstract

Duplicate Data Elimination (DDE) is our method for
identifying and coalescing identical data blocks in Storage
Tank, a SAN file system. On-line file systems pose a unique
set of performance and implementation challenges for this
feature. Existing techniques, which are used to improve
both storage and network utilization, do not satisfy these
constraints. Our design employs a combination of con-
tent hashing, copy-on-write, and lazy updates to achieve its
functional and performance goals. DDE executes primarily
as a background process. The design also builds on Storage
Tank’s FlashCopy function to ease implementation.1

We include an analysis of selected real-world data sets
that is aimed at demonstrating the space-saving potential of
coalescing duplicate data. Our results show that DDE can
reduce storage consumption by up to 80% in some applica-
tion environments. The analysis explores several additional
features, such as the impact of varying file block size and
the contribution of whole file duplication to the net savings.

1. Introduction

Duplicate data can occupy a substantial portion of a stor-
age system. Often the duplication is intentional: files are

copied for safe keeping or for historical records. Just as

often, the duplicate data appear through independent chan-
nels: individuals who save the same email attachments or

who download the same files from the web. It seems in-

tuitive that addressing all of this unrecognized redundancy
could result in storage resources being used more effi-

ciently.
Our research goal is to reduce the amount of duplicated

1Storage Tank technology is available today in the IBM Total Storage

SAN File System (SANFS). However, this paper and research is based on
underlying Storage Tank technology and may not become part of the IBM

TotalStorage SAN File System product.

data in on-line file systems without significantly impacting
system performance. This performance requirement is what

differentiates our approach, which we call Duplicate Data

Elimination (DDE), from those used in backup and archival
storage systems [1, 6, 23]. To minimize its performance

impact, DDE executes primarily as a background process

that operates in a lazy, best-effort fashion whenever possi-
ble. Data is written to the file system as usual, and then

some time later, background threads find duplicates and co-

alesce them to save storage. DDE is transparent to users. It
is also flexible enough to be enabled and disabled on an ex-

isting file system without disrupting its operation, and flex-
ible enough to be used on parts of the file system, such as

select directories or particular file types.
Duplicate Data Elimination (DDE) is designed for IBM

Storage Tank [17], a heterogeneous, scalable SAN file sys-

tem. In Storage Tank, file system clients coordinate their
actions through meta-data servers, but access the storage

devices directly without involving servers in the data path.

DDE uses three key techniques to address its design goals:
content-based hashing, copy-on-write (COW), and lazy up-

date. DDE detects duplicate data on the logical block level

by comparing hashes of the block contents; it guarantees
consistency between block contents and their hashes by us-

ing copy-on-write. Data is coalesced by changing corre-

sponding file block allocation maps. COW and lazy update
allow us to update the file block allocation maps without

revoking the file’s data locks. Together these techniques
minimize DDE’s performance impact.

Figure 1 shows an example of coalescing duplicate data
blocks in an on-line file system. Before coalescing, files F1,
F2 and F3 consume 11 blocks. However, they each contain
a common piece of data that is three blocks in size. Clients
are unaware of this duplication when they write these files.

The server detects the common data later and coalesces the

identical blocks. After coalescing, F1–F3 consume only five
blocks in total by sharing the same three blocks. Six blocks

are saved, resulting in a 55% storage reduction.
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Figure 1. An example of coalescing duplicate
data blocks.

2. Background

IBM Storage Tank is a multi-platform, scalable file sys-

tem that works with storage area networks (SANs) [17]. In
Storage Tank, data is stored on devices that can be directly

accessed through a SAN, while meta-data is managed sep-

arately by one or more specialized Storage Tank meta-data
servers. Storage Tank clients are designed to direct all meta-

data operations to Storage Tank servers and to direct all data

operations to storage devices. Storage Tank servers are not
involved in the data path.

The current version of Storage Tank works with ordi-
nary block-addressable storage devices such as disk drives

and RAID systems. The basic I/O operation unit in Storage

Tank is a block. The storage devices are required to have no
more intelligence than the ability to read and write blocks

from the volumes (LUNs) they present. Storage Tank file
data is also managed in block units. The size of a file block

is typically a multiple of the device block size.
Storage Tank exposes three new abstractions called file

sets, storage pools, and arenas. These are in addition to the
traditional abstractions found in file systems such as files,
directories, and volumes. A file set is a subtree of the global

namespace. It groups a set of Storage Tank files and direc-

tories for the purpose of load balancing and management. A
storage pool is a collection of one or more volumes. It pro-

vides a logical grouping of the volumes for the allocation

of space to file sets. A file set can cross multiple storage
pools. An arena provides the mapping between a file set

and a storage pool. As such, there is one arena for each
file set that has files in a particular storage pool. The arena

abstraction is strictly internal to the Storage Tank server,

but is an important element in duplicate data elimination.
Using an arena, Storage Tank can track the used and free

space owned by a file set in a storage pool, and specifies the

logical to physical mapping of space in the file set to the
volumes in the storage pool.

The Storage Tank Protocol provides a rich locking
scheme that enables file sharing among Storage Tank clients

or, when necessary, allows clients to have exclusive ac-

cesses to files [5, 7, 8]. A Storage Tank server grants locks

to clients, and the lock granularity is per file. There are three
file lock modes in Storage Tank: 1) exclusive (X), which al-

lows a single client to cache both data and metadata, which

it can read and modify; 2) Shared Read (SR), which allows
clients to cache data and metadata for read operations, and

3) Shared Write (SW), in which mode clients cannot cache
data but can cache metadata in read-only mode. The Stor-

age Tank Protocol also provides copy-on-write capability to

support file system snapshots. The server can mark blocks
as read-only to enforce copy-on-write.

Storage Tank technology is available today in the IBM
Total Storage SAN File System (SANFS). However, this pa-

per and research is based on underlying Storage Tank tech-

nology and may not become part of the IBM TotalStorage
SAN File System product.

3. Related Work

Data duplication is ubiquitous. Different techniques

have been proposed to identify commonality in data, and

to exploit this knowledge for reducing storage and network
resource consumption due to storing and transferring dupli-

cate data.
Our work was directly inspired by Venti [23]. Venti is a

network storage system intended for archival data. In Venti,

the unique SHA-1 [12] hash of a block acts as the block
identifier, which is used in place of the block address for

read and write operations. Venti also implements a write-

once policy that prohibits data from being deleted once it is
stored. This write-once policy becomes practical, in part,

because Venti stores only one copy of each unique data
block.

In on-line file systems, performance is essential and data
is dynamic and ready to change. This is radically differ-

ent from the requirements in archival and backup systems,

where data is immutable and performance is less of a con-
cern. In our design, duplicate data is also detected on the

block level, but in the background. Data is still addressed

as usual by the block where it is stored, so data accesses
have no extra hash-to-block index searching overheads as

in Venti. In turn, it determines that data duplication detec-

tion and coalescing is an after-effect effort, i.e. it is done af-
ter clients have written data blocks to storage devices. The

server also maintains a mapping function between block
hashes and blocks. A weaker variant of the write-once pol-

icy, copy-on-write (COW), is used to guarantee its consis-

tency. Unreferenced blocks due to deletion and COW can
be reclaimed.

Single instance store (SIS) [3] also detects duplicate data
in an after-effect fashion but on the file level. The tech-

nique is optimized for Microsoft Windows remote install

servers [18] that store different installation images. In this
scenario, the knowledge of file duplication is a priori and

files are less likely to be modified. In general on-line file
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systems, the granularity of file-level data duplication detec-

tion may be too coarse because any modification to a file
can cause the loss of the benefit of storage reduction.

LBFS [20] and Pastiche [9] detect data duplication at the
granularity of variable-sized chunks, whose boundary re-

gions, called anchors, are identified by using the techniques
of shingling [16] and Rabin fingerprints [24]. This tech-
nique is suitable for backup systems and low-bandwidth

network environments, where the reduction of storage and

network transmission is more important than performance.
Delta compression is another technique that can effec-

tively reduce duplicate data, thus the requirements of stor-
age and network bandwidth [1, 6, 19, 25]. When a base ver-

sion of a data object exists subsequent versions can be repre-
sented by changes (deltas) to save both storage and network

transmission. Delta compression, in general, requires some

prior knowledge of data object versioning. It cannot explore
common data across multiple files and a change of a (base)

file may cause recalculating deltas for other files. In DERD

(Delta-Encoding via Resemblance Detection) [11], similar
files can be identified as pairs by using data similarity de-

tection techniques [4, 16] without having any specific prior

knowledge.
Some file systems provide on-line compression capabil-

ity [15, 21]. Although it can effectively improve storage
efficiency, this technique has significant run-time compres-

sion and decompression overheads. On-line compression

explores intra-file compressibility and cannot take advan-
tage of common data across files.

The techniques of naming and indexing data objects
based on their content hashes are also found in several other

systems. In the SFS read-only file system [13], blocks are
identified by their SHA-1 hashes and the block hashes are

hashed recursively to build up more complex structures.

The Stanford digital library repository [10] uses the cyclic
redundancy check (CRC) values of data objects as their

unique handles. Content-derived names [2, 14] take a sim-

ilar approach to address the issue of naming and managing
reusable software components.

4. Design of Duplicate Data Elimination

Our design goal is to transparently reduce duplicate data
in Storage Tank as much as possible without penalizing sys-

tem performance significantly. Instead of finding data du-
plication at the first spot, we delay this duplication detec-

tion and identify and eliminate duplicate data when server

loads are low. In this way, we minimize the performance
impact of duplicate data elimination (DDE). In our design,

we use three techniques: content-based hashing, copy-on-

write (COW), and lazy update.
Duplicate data blocks are detected by the Storage Tank

server. A client uses a collision-resistant hash function to
digest the block contents it writes to storage devices and

returns their hashes to the server. Such a unique hash is

called the fingerprint of a block. The server compares
block fingerprints and coalesces blocks with the same fin-
gerprint (and the same content) by changing corresponding

file block allocation maps. The server guarantees consis-

tency between block contents and their fingerprints by di-
recting clients to perform copy-on-write. The server also

maintains a reference count for each block and postpones
the reclamation of unreferenced blocks. These techniques

allow the server to update file block allocation maps with-

out revoking any outstanding data locks on them.
Figure 2 shows the basic idea of duplicate data block

elimination in a live file system. The client holds an ex-
clusive (X) lock on file A and a shared-read (SR) lock on

file B. These lock modes are described in Section 2. File

A and B have the same data stored in blocks 100 and 150
respectively. Before duplicate block coalescing, the server

and the client share the same view of files and file block al-

location maps. The server finds duplicate data and changes
the block allocation map of file B to reference block 100

without updating the client. Even though the client has a

stale view on file B, it can still read out the correct data be-
cause block 150 is not reclaimed immediately. When the

client modifies block 100 of file A, it writes the new content
to another block and keeps the content of block 100 intact.

Therefore, the content and the fingerprint of block 100 are

still consistent and file B still references the right block.

4.1. Duplicate Data Detection

The most straightforward and trusted way of duplicate

data detection is bytewise comparison. Unfortunately, it is

expensive. An alternative method is to digest data contents
by hashing them to much shorter fingerprints and detect du-

plicate data by comparing their fingerprints. As long as the
probability of hash collisions is vanishingly small, we can

be confident that two sets of data content are identical if

their fingerprints are the same.
In our design, duplicate data is detected on the block

level, although maintaining a fingerprint for each block im-
poses a large amount of bookkeeping information on the

system. Storage Tank is based on block-level storage de-

vices, and blocks are the basic operation units. Block-level
detection avoids unnecessary I/Os required by other ap-

proaches based on files [3] or variable-sized chunks [9, 20],

in which the client may have to read other disk blocks be-
fore it can recalculate fingerprints due to data boundary

mis-alignments. Data duplication detection that is based

on blocks has finer granularity and, therefore, higher possi-
bility of storage reduction than techniques based on whole

files [3]. Approaches based on variable-sized chunks [9, 20]
require at least as much bookkeeping information as the

block-based approaches because they tend to limit the av-

erage chunk size to obtain a reasonable chance of detecting
duplicate data. Chunk-based approaches also need a totally

different file block allocation map format from the existing
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Figure 2. An example of coalescing duplicate data blocks in a live file system.

Storage Tank implementation, which makes them difficult
to employ.

DDE uses the SHA-1 hash function [12] to fingerprint
block data contents. SHA-1 is a one-way secure hash func-

tion with a 160-bit output. Even in a large system that con-

tains an exabyte of data (1018 bytes) as 4 kilobyte blocks
(roughly 3

�
1014 blocks), the probability of hash collisions

using the SHA-1 hash function is less than 10 � 19, which is
at least 5–6 orders of magnitude lower than the probability
of an undetectable disk error. To date, there are no known

collisions by this hash function. Therefore we can be confi-
dent that two blocks are identical if their SHA-1 hashes are

the same. In addition, the system could perform bytewise

comparisons before coalescing blocks as a cross check.
In Storage Tank, data and meta-data management are

separated, and Storage Tank servers are not involved in the
data path during normal operations. Disks have little intelli-

gence and cannot detect duplicate data by themselves. Even

with smarter disks, without extensive inter-disk communi-
cations, each disk would know only its local data finger-

prints, which would reduce the chances of detecting dupli-

cation. In our design, a client calculates fingerprints of the
blocks it writes to storage devices and returns them to the

server. Software implementations of SHA-1 are quite effi-

cient and hashing is not a performance bottleneck. Storage
Tank servers have a global view of the whole system and

are appropriate for data duplication detection.

4.2. Consistency of Data Content and Finger-
prints

After we hash the data content of a block, the fingerprint
becomes an attribute of the block. Because the fingerprint

is eventually stored on the server and the block can be di-
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Figure 3. Maintaining consistency between
fingerprint and block content under (a)
update-in-place and (b) copy-on-write.

rectly accessed and modified by clients, the consistency of

the fingerprint and the data content of a block becomes a

problem. In Storage Tank, a client can modify a block by
two approaches: update-in-place and copy-on-write.

4.2.1. Update-in-Place

In Storage Tank, a client can directly modify a block if

the block is writable, i.e. it writes new data to the same
block. This results in inconsistency between the server-

side block fingerprint and the block content until the client

returns the new fingerprint to the server, as shown in Fig-
ure 3(a). The fingerprint of block 100 that the server keeps

is inconsistent with the block content until the client returns

the latest fingerprint. During the period of inconsistency,
any data duplication detection related to this block gives

false results.
We can detect this potential inconsistency by checking

data locks on the file to which the block belongs. Because
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the granularity of file data locks in Storage Tank is per file,

the server cannot trust all of the block fingerprints of a file
with an exclusive data lock on it.

To avoid erroneous duplication detection and coalescing,
we could simply delay DDE on those files with exclusive

or shared-write locks. This is feasible in some workloads

where only a small fraction of files are active concurrently.
However, this approach cannot save any storage in some im-

portant environments, such as databases, where applications

always hold locks on their files.
Another approach is to revoke data locks on files to force

clients to return the latest block fingerprints. This causes
two technical problems: lock checking and lock revocation.

To check file locks, every block has to maintain a reverse
pointer to the file to which it belongs, which makes the

bookkeeping information of a block even larger. To guar-

antee consistency between fingerprints and block contents,
every block-coalescing operation has to revoke file locks, if

necessary, which can severely penalize the system perfor-

mance. Therefore, eliminating duplicate data blocks under
the update-in-place scenario is inefficient, at best, or impos-

sible.

4.2.2. Copy-on-Write

The basic idea of our work is to eliminate duplicate

data blocks by comparing their fingerprints. By using a
collision-resistant hash function with a sufficiently large

output, such as SHA-1, the fingerprints are considered to

be distinct for different data. Therefore, the fingerprint can
serve as a unique virtual address for the data content of a

block. The mapping function from the virtual address to the
physical block address is implicitly provided by the block

address itself. Our aim is to make the mapping function

nearly one-to-one, i.e. each virtual address is mapped to
only one physical address.

However, update-in-place violates the basic concept of
content-addressed storage by making the mapping func-

tion inconsistent. Conceptually, if the content of a block is

changed, the new content should be mapped to a new block
instead of the original one. Consequently, a client should

write modified data to new blocks, which implies a write-

once policy, as in Venti [23]. However, write-once keeps
all histories of data, which is unnecessary and expensive in

on-line file systems. Therefore, we use a weaker variant
of write-once, copy-on-write. This technique can guarantee

the consistency of the mapping function as long as the orig-

inal blocks are not reclaimed, as shown in Figure 3(b). The
fingerprint of block 100 that the server keeps is still consis-

tent with the block content until block 100 is reclaimed.
Apparently, copy-on-write has a noticeable overhead on

normal write operations. Every block modification requires

free block allocation because the modified content needs to
be written to a new block. However, this cost is less signif-

icant than we thought. Some applications, such as Emacs

and Microsoft Word, write the whole modified file into a

new place, in which case there is no extra cost for COW.
The server could also preallocate new blocks to the client

that acquires an exclusive or shared-write lock. The most

promising approach to alleviate the extra allocation over-
head of COW is for the clients to maintain a private storage

pool on behalf of the server from which they could allocate
locally. Therefore, there is almost no extra cost for COW.

4.3. Lazy Lock Revocation and Free Space Recla-
mation

The server coalesces duplicate data blocks and reduces

storage consumption by updating file block allocation maps

to point to one copy of the data and reclaim the rest. During
file block allocation map updates, the server does not check

whether any client holds data locks on the files. Therefore,

the block allocation maps held by the server and clients
can be inconsistent, as illustrated in Figure 2. However,

we postpone the reclamation of the dereferenced blocks.
Therefore, clients holding stale file block allocation maps

can still read the correct data from these blocks. At some

particular time, e.g. midnight, or when the file system is
running low on free space, the server revokes all data locks

held by clients and frees those dereferenced blocks.

5. Process of Duplicate Data Elimination

Duplicate data elimination is done by the coordination

between clients and servers. Simply speaking, clients per-
form copy-on-write operations and calculate and return

block SHA-1 hashes to servers. Servers log clients’ activ-

ities and identify and coalesce duplicate data blocks in the
background. Users are unaware of such operations.

5.1. Impact on Client’s Behaviors

In addition to its normal behaviors, a client calculates

SHA-1 fingerprints for the data blocks it writes and re-

turns the fingerprints to the server. Because copy-on-write
is used (Section 4.2.2), the client does not write modified

data blocks back to their original disk blocks; instead, mod-

ified data is written to newly-allocated blocks. As long as
the client holds a file data lock, further modifications to the

same logical block are written to the same newly-allocated

disk block. On an update to the server, the client sends the
latest block fingerprints along with the block logical offsets

within the file and the original physical locations of modi-
fied data blocks.

5.2. Data Structures on the Server

We discuss necessary data structure supports on the
server that facilitate duplicate data block detection and elim-

ination. Essentially, a reference count table, a fingerprint
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Figure 4. Data structures for storing and re-
trieving block attributes.
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Figure 5. Data structures for logging recent
clients’ activities.

table and its secondary index maintain attributes associated

with blocks, i.e. reference counts and fingerprints, as shown
in Figure 4; and a dereference log and a new fingerprint log

record recent clients’ activities, as shown in Figure 5.
The scope of duplicate data elimination is an important

design decision. The larger the scope, the higher the de-
gree of data duplication can be, thus providing more bene-

fit. However, for various reasons, people may want to share

data only within their working group or their department.
Therefore, we limit data duplication detection and elimina-

tion within a file set, which essentially is a logical subset

of the global namespace. Even within a file set, files can
be stored in different storage pools that may belong to dif-

ferent storage classes, which have different characteristics

in access latency, reliability, and availability. Sharing data
across storage classes can result in noticeable impacts on the

quality of storage service. Therefore, we further narrow the
scope of DDE within an arena, which provides the mapping

between a file set and a storage pool. The data structures we

will discuss soon are per arena.
Data are not equally important. Detecting and coalescing

temporary, derived, or cached data is less beneficial. Be-
cause Storage Tank provides policy-based storage manage-

ment, a system can be easily configured to store these data

in less reliable and so cheaper storage pools, while storing
important data in more reliable storage pools. DDE within

an arena can take advantage of this flexibility.
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Figure 6. A block is in one of the following
states: unallocated, allocated, referenced,
and unreferenced.

Because an arena allows the logical to physical mapping

of space in the file set to the LUNs in the storage pool, it
is equivalent to referencing a block by its physical location

and by its logical offset within an arena. For convenience,
we will reference an allocated physical block by its logical

offset within the arena.
To keep the per-arena data structures to an optimal size,

we use 32-bit integers to represent logical block offsets

within an arena. Therefore, an arena can contain no more
than 232 physical blocks. For 4 KB blocks, an arena can

manage 16 TB storage, which is large enough for most ap-

plications and environments. However, there is no such a
limitation on the capacity of a file set because it can cross

multiple storage pools and can consist of multiple arenas.

5.2.1. Reference Count Table

With block coalescing and sharing, a physical block can

be referenced multiple times by different files or even one

file. Therefore, a reference count is necessary for each block
in the arena. From the viewpoint of DDE, a block can be

in one of the following four states: 1) free – the block is

unallocated; 2) allocated – the block is allocated but unused
or it contains valid data that is unhashed; 3) referenced –

the block contains valid data, which has been hashed, and is

referenced at least once; and 4) unreferenced – the block is
allocated and hashed, but has no file referencing it and can

be freed or reused. Figure 6 illustrates the four states and
the transitions among them.

Without accessing the arena block allocation map, we

cannot know whether a block is allocated or not. Fortu-
nately, we are interested in the validity of block fingerprints

in our work. Therefore, blocks that are in the first two states
(free and allocated) can be merged into one state, invalid,

because they contain no valid fingerprints. The reference

count of a block indicates its state: 1) invalid, where the ref-
erence count is 0, 2) referenced, where the reference count

is no less than 1, or 3) unreferenced, where the reference
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count is � 1. The initial state of a block is invalid because it
contains no valid fingerprint until a client calculates it.
A reference count table keeps the reference count for

each block in the arena. The table is organized as a linear
array, which is indexed by the 32-bit logical block offset

within the arena. Each entry in this table is also a 32-bit

integer, indicating the state of the corresponding block. The
size of the table is up to 232

�
4 bytes � 16 GB. Because

block reference counts are crucial to data integrity, any up-

date on them should be transactional.
A block may contain valid data but has no fingerprint

associated with it. Note that the fingerprint of a block is
calculated when it is written. If a block is written before

the server turns on this feature, it has no fingerprint on the
server. A utility running on the server could ask clients to

read those data blocks and calculate their fingerprints on

behalf of the server.

5.2.2. Fingerprint Table

The fingerprint table keeps unique fingerprints of the
blocks in an arena. Each fingerprint in this table is associ-

ated with a unique physical block. In other words, the table
maintains a one-to-one mapping function between finger-

prints and physical blocks. We detect and coalesce dupli-

cate data blocks when we merge the new fingerprint log to
this table. The fingerprint table is also organized as a linear

array and indexed by the 32-bit logical block offset. Each

entry contains a 160-bit SHA-1 fingerprint. A fingerprint is
valid only if its block reference count is no less than 1.

The size of the table is up to 232
�
20 bytes � 80 GB, and

it cannot fit in memory. Fortunately, disk block accesses

have sequential patterns due to sequential block allocations

and file accesses. Therefore, we organize the secure finger-
print table linearly to facilitate comparisons under sequen-

tial block accesses. If two disk blocks contain the same

content, it is likely that their consecutive blocks also have
identical contents. The linear structure makes consecutive

fingerprint comparisons efficient because all related entries
are in memory.

Conceptually, both the reference count table and the fin-
gerprint table are for describing block attributes and can be

merged into one table. Because their sizes are potentially

large, and the block reference count is accessed more fre-
quently than the fingerprint, we store them separately to op-

timize system memory usage.

5.2.3. Secondary Index to Fingerprint Table

Although the linear fingerprint table favors sequential
searching, it is difficult to look for a particular fingerprint

in this table. Therefore, we also index the table by partial

bits of the SHA-1 fingerprint to facilitate random searching.
A static hash index is used for this purpose. The hash buck-

ets are indexed by the first 24 bits of the SHA-1 fingerprint.

Each bucket contains a 32-bit block pointer. Therefore,

the size of the first level index is 224
�
4 bytes � 64 MB,

which can well fit in memory. Each entry in the bucket

block contains a 32-bit in-arena logical block offset, indi-

cating the block that the fingerprint is associated with, and
the next 32 bits of the SHA-1 fingerprint. Because an arena

contains no more than 232 blocks, the average number of
hash entries in a bucket is 232 � 224 � 28 � 256. When the
bucket block size is 4 KB, the average block utilization is�
256

� �
4 � 4 � � � 4096 � 50%. For an arena with capac-

ity much less than 16 TB, multiple buckets can share one

bucket block for better storage and memory utilization.

5.2.4. Dereference Log

The dereference log records the in-arena logical offsets

of blocks that are recently deleted, dereferenced due to

COW by clients, or dereferenced due to block coalescing
by the server. We will discuss the third case in greater de-

tails in Section 5.3.3. This log is also called semi-free list
because the blocks in this list could be freed if there is no
longer any reference to them. Each entry in this log is a 32-

bit integer. To avoid storage leakage, any update on this log
should be transactional.

5.2.5. New Fingerprint Log

The new fingerprint log records clients’ recent write ac-
tivities. Each entry in this log includes a 64-bit file ID, a 64-

bit logical block offset within the file, a 32-bit logical offset

within the arena, and a 160-bit SHA-1 fingerprint. Append-
ing new entries to this log can be non-transactional for the

performance purpose because losing the most recent entries

only causes losing some opportunities for storage reduction.

5.3. The Responsibilities of the Server

The server enforces a client’s copy-on-write behaviors

by marking the copy of the file block allocation map in

the message buffer as read-only when it responds to a file
data lock request from the client. The server immediately

logs clients’ recent activities, such as delete and write op-

erations. In our design, DDE runs in a best-effort fashion.
Therefore, the server lazily detects and coalesces duplicate

data blocks and reclaims unused blocks. It also maintains

block reference counts and fingerprints correspondingly.

5.3.1. Logging Recent Activities

When the server receives a dirty file block allocationmap
from a client, it compares it with the one on the server. If a

block is marked as unused due to copy-on-write, the server

first checks whether it is still referenced by the server-side
file block allocation maps. If referenced, the in-arena logi-

cal offset of the unused block is appended to the dereference
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log; if not (it is possible due to duplicate block coalescing

without lock revocation), the block currently referenced by
the server-side block allocation map is logged because it is

dereferenced by recent modifications on the corresponding
file logical block. The unused block returned from the client

is not logged because it has been dereferenced due to block

coalescing. Other unused blocks are logged.
For each recently-written block, the server also appends

an entry to the new fingerprint log, including the identifier
of the file to which it belongs, its logical block offset within

the file, its logical block offset within the arena, and its fin-

gerprint.

5.3.2. Log Epoch and Preprocessing

We periodically checkpoint the dereference log and the
new fingerprint log for two reasons. First of all, the data du-

plication detection and elimination processes run in a best-

effort and background fashion and are unlikely to keep up
with the most recent clients’ activities. Logging and check-

pointing these activities allow the server to detect and coa-
lesce duplicate data blocks during its idle time. By check-

pointing the log to epochs, we also limit the number of ac-

tivities the server processes at a time. Second, recently-
written blocks are likely to be modified again. Trying to

coalesce these blocks is less beneficial. Therefore, we try to

coalesce only blocks in a stable epoch, as shown in Figure 7,
whose lifetimes have been long enough.

Assume that we want to merge the new fingerprint log
in epoch

�
t0 � t1 � to the fingerprint table. Because random

accesses on the fingerprint table are expensive, we try to

reduce the number of fingerprint comparisons by deleting
unuseful entries in the new fingerprint log in epoch

�
t0 � t1 � .

First of all, we find overwritten file logical blocks by
sorting the log by file ID and logical block offset within

a file. We delete the older entries from the log and set their

block reference counts to be � 1 (unreferenced). We set the
block reference counts of other entries in the log to be 1.

Second, we scan the dereference log in epoch
�
t0 � t1 � . For

each entry in the log, we decrease its block reference count

by 1; if the count becomes less than 1, we set it to be � 1.
Third, we compact the new fingerprint log

�
t0 � t1 � by delet-

ing those entries also in the dereference logs
�
t0 � t1 � and�

t1 � t2 � . The matched entries in the dereference log �
t1 � t2 �

are removed and their block reference counts are set to be
� 1.
Note that a fingerprint in the fingerprint table becomes

invalid when its block reference count reaches � 1. Con-
ceptually, we should also remove its index entry in the sec-

ondary index. However, we do not update the secondary

index during the log preprocessing because of performance
reasons. We postpone the removal of false indexes until the

duplicate block coalescing process notices them. False in-

dex removal also happens when a secondary index bucket
block becomes full.

5.3.3. Merging to Fingerprint Table

We detect and coalesce duplicate data blocks when we

merge the compacted new fingerprint log to the fingerprint

table. Figure 8 shows the processes of duplication detection
and coalescing.

For each entry in the log, we first check whether it has
a matching fingerprint in the fingerprint table. If not, we

insert the new fingerprint into the table and update the sec-
ondary index. If there is an identical fingerprint in the fin-

gerprint table, we check the validity of the fingerprint. If

the block reference count of the fingerprint is less than 1, the
primary block in the fingerprint table contains no valid data.

Therefore, we insert the new fingerprint into the table and

update the secondary index. We also need to delete the false
index in the secondary index because the previous matching

index leads to a block containing invalid data. If the block

reference count is no less than 1, we fetch the block allo-
cation map of the file to which the recently-written block

belongs, and check whether this block is still referenced by
this file. If not, this means that the corresponding logical

block in this file was modified after the current fingerprint

was returned, and we simply discard this coalescing opera-
tion. If the block is still referenced, we update the file block

allocation map by referencing the primary block in the fin-

gerprint table without checking or revoking data locks on
this file. We also increase the reference count of the primary

block and set the reference count of the coalesced block to

be � 1. When a block is inserted into the fingerprint table,
either by adding a new entry or by coalescing to another

block, it is marked read-only in the block allocation map of

the file to which it belongs.

5.3.4. Free Space Reclamation

A free space reclamation process scans the reference
count table in the background. It logs the addresses of the

blocks with reference counts � 1 and sets their reference
counts to 0. At some particular time, e.g.midnight, or when
the file system is running low on free space, it revokes all

data locks and free these blocks.

6. Case Studies

We examined six data sets and studied their degrees of

data duplication and their compressibility under common
compression techniques. The data sets are summarized in

Table 1.

308



For each entry in the compacted 
new fingerprint log in epoch (t0, t1)

Found a partial hash match 

in the secondary index?

Found a full match in 

the fingerprint table?

N
Insert it into the fingerprint 
table and update the 
secondary index

N

Y

Ref. count of the 

primary block >= 1?

Y

Insert it into the fingerprint table 
and update the secondary 
index. Delete the false index in 
the secondary index

N

Match the physical location 
of the corresponding logical 

block offset in the file?

Y

If match, without revoking file 
locks, update the file data 
descriptor by referencing the 
primary block in the fingerprint 
table; increase the corresponding 
block reference count; and set the 
reference count of the de-
referenced block to be -1

Discard the 
merging 
operationN

Y

The hash value matches 
the partial bits?

Y

N

For each entry in the compacted 
new fingerprint log in epoch (t0, t1)

Found a partial hash match 

in the secondary index?

Found a full match in 

the fingerprint table?

N
Insert it into the fingerprint 
table and update the 
secondary index

N

Y

Ref. count of the 

primary block >= 1?

Y

Insert it into the fingerprint table 
and update the secondary 
index. Delete the false index in 
the secondary index

N

Match the physical location 
of the corresponding logical 

block offset in the file?

Y

If match, without revoking file 
locks, update the file data 
descriptor by referencing the 
primary block in the fingerprint 
table; increase the corresponding 
block reference count; and set the 
reference count of the de-
referenced block to be -1

Discard the 
merging 
operationN

Y

The hash value matches 
the partial bits?

Y

N

Figure 8. Merge the new fingerprint log to the fingerprint table.

Table 1. Data sets
Name Description Size (GB) Number of files
SNJGSA file server used by a development team 57 661,729

file server used by the development

BVRGSA BUILD team for code build 344 2,393,795

file server used by the development

BVRGSA TEST team for testing 215 115,141

GENOME human being genome data 348 889,884

local mirror of installation CDs

LTC MIRROR for different Linux versions 261 241,724

aggregation of ten personal

PERSONAL WORKSTATIONS workstations 123 879,657

The first three data sets—SNJGSA, BVRGSA BUILD,
and BVRGSA TEST—are from file servers used by the

Storage Tank development team. The servers are used to

distribute and exchange data files, but are not used to hold
or archive the primary copy of important files. The first

server, SNJGSA, is a remote replica that holds a subset of

the daily builds that are stored on BVRGSA BUILD, and a
subset of the test data that is on BVRGSA TEST. In gen-

eral, the oldest files are deleted when the servers run low on

space. The files are almost never overwritten; they tend to
be created and then not modified until they are purged few

months later.
GENOME contains the human being genome sequence,

and is used at UCSC by various bioinformatics applications.

The genomic data is encoded in letters, when some single
letters and some letter combinations can repeat thousands

to millions of times but in fine granularities.
LTC MIRROR is a local ftp mirror of the IBM Linux

Technology Center (LTC) that includes Open Source and
IBM software for internal download and use. Among other

things, the ftp site holds the CD images (iso) of different
Red Hat Linux installations starting at RH7.1 up to RH9.

The last data set is an aggregation of ten personal work-

stations at the IBM Almaden Research Center that are run-
ning Windows. All systems are used for development as

well as for general purposes such as email, working doc-
uments, etc. We also present the results of these systems

when they are analyzed separately.
For each data set, we collected the size and the number

of files of the system. We calculated the amount of stor-

age that is required after eliminating data duplication at the
granularity of 1 KB blocks. To compare DDE with com-

mon compression techniques, we collected the compressed

file sizes, using LZO on 64 KB data blocks. LZO (Lempel-
Ziv-Oberhumer) is a data compression library that favors

speed over compression ratio [22]. We empirically found

that the compression capability of LZO is similar to other
techniques’ when the block size is large. In addition, we

calculated the storage reduction achieved by combining the
techniques of DDE and LZO. We also calculated what per-
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Table 2. DDE and compression results.
% of storage required % of storage required

% of storage required after eliminating % of storage required after after combining DDE
Name after DDE (1 KB blocks) whole file duplications LZO on 64 KB blocks and LZO on 64 KB blocks
SNJGSA 32% 55% 56% 30%

BVRGSA BUILD 21% 62% 67% 35%

BVRGSA TEST 69% 85% 53% 47%

GENOME 96% 98% 46% 44%

LTC MIRROR 80% 94% 98% 89%

PERSONAL WORKSTATIONS 54% 69% 63% 43%

Table 3. DDE and compression results for personal workstations.
% of storage required % of storage required

% of storage required after eliminating % of storage required after after combining DDE
System after DDE (1 KB blocks) whole file duplications LZO on 64 KB blocks and LZO on 64 KB blocks
1 66% 71% 61% 43%

2 61% 78% 57% 43%

3 63% 77% 55% 41%

4 77% 91% 63% 55%

5 67% 92% 62% 53%

6 69% 77% 58% 48%

7 70% 80% 61% 49%

8 71% 78% 71% 55%

9 87% 91% 80% 74%

10 73% 84% 57% 48%

centage of the storage is still required after eliminating only

whole file duplications.
Table 2 shows the percentage of storage required for

different data sets after using DDE at the granularities of

1 KB blocks and whole files, LZO on 64 KB blocks, and
the combination of DDE and LZO. DDE at 1 KB blocks

only requires one-fifth to one-third of the original storage

to hold the BVRGSA BUILD and SNJGSA data sets and
it achieves one to two times higher storage efficiency (the

ratio of the amount of logical data to the amount of required

physical storage) than LZO at 64 KB blocks. This is be-
cause both data sets contain daily builds of the Storage Tank

codes that share lots of codes among versions; also the data
sets include very small files on average, making LZO in-

efficient. BVRGSA TEST on the other hand, has on aver-

age larger files (1.9 MB) and the best reduction is achieved
when using the combination of LZO compression and DDE

on 64 KB blocks. We will study the data set of SNJGSA in

greater detail in Section 6.1.
The genomic data set is encoded in letters. Some single

letters and letter combinations can repeat thousands to mil-
lions of times but at quite fine granularities. With this type

of data set it is unlikely to find duplications at the granu-

larities of kilobytes and DDE cannot improve storage effi-
ciency significantly. On the other hand, common compres-

sion techniques, such as LZO, are suitable for this data set.
The 4% of reduction by DDE is partially due to common

file headers and a common “special letter pattern” that fills

in gaps in the genomic sequence and partially due to dupli-
cated files that were created by analyzing applications.

Using LZO on the data set of LTC MIRROR barely re-

duces storage consumption because generally the files in the

Linux installation CD images have already been packaged

and compressed. DDE can take advantage of cross-file du-
plications, mainly from different installation versions, and

reduce storage consumption by 20%. A more interesting

data set is the actual installation of different Linux versions,
instead of the installation images. We plan to look into that

in the nearest future.
We also studied the storage requirements of ten personal

workstations after using different techniques on individual

systems, as shown in Table 3. On average 70% of stor-
age is required for individual systems after applying DDE

on them, from which more than half of the saving is due
to eliminating whole file duplications. LZO compression

can provide better storage efficiency on these systems. By

combining both LZO and DDE on 64 KB blocks, the per-
centage of storage required for individual systems is further

reduced to 51% on average. When aggregating files from all

machines together, which is potentially what happens with
enterprise-level backup applications, the aggregated stor-

age requirement of ten personal workstations by using DDE

drops significantly, from 70% to 54%, as shown as PER-
SONAL WORKSTATIONS in Table 2. This is because the

more individual systems are aggregated, the higher the de-
gree of data duplication is likely to be. Consequently, DDE

can result in tremendous storage savings for back up sys-

tems that potentially backup hundreds to thousands of per-
sonal workstations on a daily basis, which shows a very

good example of an application that could benefit from data

duplication elimination at the file system. Combining DDE
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and LZO on 64 KB blocks can further reduce the storage

requirement to 43%.
The granularity of duplicate data detection affects the ef-

fectiveness of DDE. Table 2 shows that file-level detection
can lose up to 50–70% of the chance of finding duplicate

data at 1 KB blocks. We also noticed that using both DDE

and LZO on 64 KB blocks does not always generate bet-
ter results than using DDE solely. In general, smaller block

sizes favor DDE because of finer granularities on duplica-

tion elimination; larger block sizes favor LZO because of
more efficient encoding. In fact, DDE and LZO-like com-

pression techniques are orthogonal when they are operated
at the same data unit granularity because compression ex-

plores intra-unit compressibility and DDE explores inter-

unit duplications.

6.1. Detailed Study on SNJGSA

Figure 9 shows the results of applying DDE to the
SNJGSA data set using a range of file system block sizes.

The results are given as a percentage of the data blocks that
are unique. The block size varies from 512 bytes to 64 KB.

As expected, the smallest block size works best because it

enables the detection of shorter segments of duplicate data.
Interestingly, DDE’s effectiveness starts to improve again

when the block size reaches 32 KB. The reason is that the

file system is “wasting” space using these larger blocks,
and DDE is proportionally coalescing more of this wasted

space. This effect begins to outpace the reduced number

of duplicate blocks due to coarser block granularities. Note
that Storage Tank does not support blocks sizes smaller than

4 KB; these results are included to show the savings we are
missing out on. The additional space saving potential of

smaller blocks is modest: 5%, for instance, between 1 KB

and 4 KB blocks in the SNJGSA1 data set.
SNJGSA’s usage pattern and its “FIFO” style space man-

agement allow us to use this data to simulate a growing file
system. Figure 10 shows the amount of space saved by DDE

as the file system, which starts empty, grows to eventually

contain all the files in the SNJGSA data set. The files are
added in order of their modified times (mtime). 4 KB blocks

are used. The rightmost value on the chart is 38%, which

matches the space savings shown in Figure 9.
If Figure 10 had shown a gradual improvement starting

at 100% (no compression) and monotonically decreasing to
38%, we could assert that duplication in this data set is inde-

pendent of time. This is the type of curve that would be gen-

erated if the files were inserted in random order rather than
being sorted by mtime. If the chart had shown a flat curve,

this would indicate that data duplication is highly correlated
in time, i.e. has strong temporal locality. The duplicate
blocks found in a new file would likely match blocks that

were added, for instance, within the last 24 hours, but very
unlikely to match blocks that were added a month ago. DDE

performsmost efficiently on highly time correlated duplica-
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Figure 9. SNJGSA, percentage of storage re-
quired after removing duplicate data.

tion because duplicate blocks tend to be coalesced within a

log epoch and require fewer updates to the fingerprint table.

At the same time, uncorrelated duplication allows DDE to
produce a continually improving compression ratio as the

data set grows.
The SNJGSA data set consists of 15 million 4 KB

blocks, among which 3.3 million are referenced only once.

Among the remaining 11.7 million blocks, only 2.5 mil-
lion are unique. Figure 11 shows the cumulative distribu-

tions of storage savings made by frequently occurring data

blocks. It reveals that only 1% of unique blocks contributes
to 29% of the total storage savings. This suggests us that

even a small amount of hash cache on the client side could
explore the frequency of data duplication and save actual

I/O on the first spot. Although we have not had the opportu-

nity to study the recency of data duplication, we believe that
with careful design, the client-side hash cache can also take

advantage of this recency to improve system performance.

Furthermore, the spatial and temporal localities of duplicate
data generation are dominant factor of DDE’s performance

on the server side.
SNJGSA and BVRGSA BUILD demonstrate applica-

tions that can substantially benefit from DDE. The engi-

neers using these file servers exploit storage space to make
their jobs easier. One way they do this is by creating hun-

dreds of “views” of their data in isolated directory trees,
each with a dedicated purpose. However, these pragmatic,

technology savvy users do not use a snap-shot facility to

create these views, or a configurationmanagement package,
or even symbolic links. The engineers employ the most ro-

bust and familiar mechanisms available to them: copying

the data, applying small alterations, and leave the results to
linger indefinitely. In this environment, the file system is the

data management application, and DDE extends its reach.

7. Discussions

Often duplicate data copies are made for the purpose of
reliability, preservation, and performance. Typically, such

duplicate copies are and should be stored in different stor-
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Figure 10. SNJGSA, percentage of unique
blocks in a simulated growing file system.
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Figure 11. SNJGSA, cumulative contribution
to the total storage savings made by coalesc-
ing frequently occurring data blocks. Blocks
are sorted by their reference frequencies.

age pools. Since the technique of duplicate data elimination

is scoped to an arena, data on different storage pools will
not be coalesced and its reliability, preservation, and the

performance of accessing data will not be affected. If the

duplicate data copies are made against inadvertent deletion
or corruption of file data, DDE allows copies to be made

without consuming additional storage space and still pro-

tects against deletion or corruption. However, DDE does
create an exposure to potential multiple file corruptions due

to a single block error.
DDE coalesces duplicate data blocks in files. It can re-

sult in file fragmentation thus degrade the system perfor-

mance due to non-contiguous reads. This can be alleviated
by only coalescing duplicate data with sizes of at least N
contiguous blocks. In Section 6, we also found that the ma-
jority of duplicate blocks come from whole files, in which

cases reading those files has no additional seek overheads.

It is probable that DDE can reduce system write activities
if clients can detect duplicate data before writing to storage

devices, which will be discussed further in Section 8. DDE

can also potentially improve the storage subsystem cache
utilization because only unique data blocks will be cached.

The degree of data duplication can vary dramatically in
different systems and application environments. DDE is a

technique that is suitable for those environments with ex-

pected high degrees of data duplication such as backup of

multiple personal workstations, and it is not necessarily in-
tended for general uses.

The key techniques used in DDE are content-based hash-
ing, copy-on-write, and lazy updates. With necessary and

appropriate supports, these techniques thus DDE could be

also applicable to other file systems besides Storage Tank.
Particularly, lazy updates minimize the performance impact

of identifying duplicate data and maintaining block meta-

data, which will also be beneficial to other file systems.

8. Future Work

We are working on implementing duplicate data elimi-

nation in Storage Tank. Besides implementation, there are
several research directions we can explore in the future.

The technique of copy-on-write plays a key role in our
design to guarantee consistency between fingerprints and

block contents. However, it forces a client to request new

block allocations for each file modification and has notice-
able overheads on normal write operations. To alleviate the

extra allocation cost due to COW, the server could preal-

locate new blocks to a client that acquires an exclusive or
shared-write lock. Therefore, the preallocation policy for

COW is an interesting research topic. Another promising
approach to alleviate this overhead is to allow a client to

maintain a small private storage pool on behalf of the server.

Therefore, there is almost no extra cost for COW.
In our current design, we employ quite a naive coalesc-

ing policy: when we find a recently-written block contain-
ing the same data as a block in the fingerprint table, we sim-

ply dereference the new block and change the correspond-

ing file block pointer to the primary block in the fingerprint
table. This policy is suboptimal in terms of efficiency. Al-

though we have considered file and block access patterns

in our design, we do not, for simplicity, explicitly elaborate
policies that favor sequential fingerprint probing andmatch-

ing under certain block access patterns. Therefore, further

research on such policies is needed.
The naive coalescing policy we describe in this paper

may also result in file fragmentation. Coalescing few blocks
within a large file is less desirable. Therefore, a study

on policies for minimizing file fragmentation is interesting.
Furthermore, a good coalescing policy could reduce storage

fragmentation by reusing the lingering unused blocks due to

lazy free space reclamation.
The fingerprint of a block is a short version of its data. A

client can easily keep a history of its recent write activities
by maintaining a fingerprint cache. The client can do part of

the duplicate data elimination work in conjunction with the

server. More beneficially, actual write operations to storage
can be saved if there are cache hits.

As far as we know, there are no extensive and intensive
studies on the duplicate data distributions of the block level

or other levels. A better understanding of data duplication in
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file systems can be enormously beneficial for making good

duplicate data coalescing policies.
In our design, we add two attributes on physical disk

blocks: the reference count and the SHA-1 fingerprint of
the block content. We also provide appropriate data struc-

tures to store and retrieve these attributes. Our work makes

it feasible to check data integrity in Storage Tank. A client
can ensure that the data it reads is the data it writes by com-

paring the fingerprint on the server with the one calculated

from the data it recently reads.

9. Conclusions

Although disk prices drop dramatically, storage is still a

precious resource in computer systems. For some data sets,
reducing storage consumption caused by duplicate data can

significantly improve storage usage efficiency. By using

techniques of content-based hashing, copy-on-write, lazy
lock revocation, and lazy free space reclamation, we can

detect and coalesce duplicate data blocks in on-line file sys-

tems without a significant impact on system performance.
Our case studies show that 20–79% of storage can be saved

by the technique of duplicate data elimination at 1 KB
blocks in some application environments. File-level dupli-

cation detection is sensitive to changes of file contents and

can lose up to 50–70% of the chance of finding duplicate
data at finer granularities.
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Abstract

Recently storage management has emerged as one of the main
problems in building cost effective storage infrastructures. One
of the issues that contribute to management complexity of stor-
age systems is maintaining previous versions of data. Up till now
such functionality has been implemented by high-level applica-
tions or at the filesystem level. However, many modern systems
aim at higher scalability and do not employ such management
entities as filesystems.

In this paper we propose pushing the versioning functionality
closer to the disk by taking advantage of modern, block-level
storage devices. We present Clotho, a storage block abstraction
layer that allows transparent and automatic data versioning at the
block level. Clotho provides a set of mechanisms that can be
used to build flexible higher-level version management policies
that range from keeping all data modifications to version captur-
ing triggered by timers or other system events.

Overall, we find that our approach is promising in offloading sig-
nificant management overhead and complexity from higher sys-
tem layers to the disk itself and is a concrete step towards building
self-managed storage devices. Our specific contributions are: (i)
We implement Clotho as a new layer in the block I/O hierarchy
in Linux and demonstrate that versioning can be performed at the
block level in a transparent manner. (ii) We investigate the impact
on I/O path performance overhead using both microbenchmarks
as well as SPEC SFS V3.0 over two real filesystems, Ext2FS and
ReiserFS. (iii) We examine techniques that reduce the memory
and disk space required for metadata information.

1. Introduction

Storage is currently emerging as one of the major prob-
lems in building tomorrow’s computing infrastructure. Fu-
ture systems will provide tremendous storage, CPU pro-

1Also, with the Department of Computer Science, University of Crete,
P.O. Box 2208, Heraklion, GR 714 09, Greece

cessing, and network transfer capacity in a cost-efficient
manner and they will be able to process and store ever in-
creasing amounts of data. The cost of managing these large
amounts of stored data becomes the dominant complex-
ity and cost factor for building, using, and operating mod-
ern storage systems. Recent studies [10] show that stor-
age expenditures represent more than 50% of the typical
server purchase price for applications such as OLTP (On-
Line Transaction Processing) or ERP (Enterprise Resource
Planning) and these percentages will keep growing. Fur-
thermore, the cost of storage administration is estimated at
several times the purchase price of the storage hardware
[2, 5, 7, 12, 33, 34, 36]. Thus, building self-managed stor-
age devices that reduce management-related overheads and
complexity is of paramount importance.

One of the most cumbersome management tasks that re-
quires human intervention is creating, maintaining, and
recovering previous versions of data for archival, dura-
bility, and other reasons. The problem is exacerbated as
the capacity and scale of storage systems increases. To-
day, backup is the main mechanism used to serve these
needs. However, traditional backup systems are limited in
the functionality they provide. Moreover they usually in-
cur high access and restore overheads on magnetic tapes,
they impose a very coarse granularity in the allowable
archival periods, usually at least one day, and they result
in significant management overheads [5, 27]. Automatic
versioning, in conjunction with increasing disk capacities,
has been proposed [5, 27] as a method to address these is-
sues. In particular, magnetic disks are becoming cheaper
and larger and it is projected that disk storage will soon be
as competitive as tape storage [5, 9]. With the advent of in-
expensive high-capacity disks, we can perform continuous,
real-time versioning and we can maintain online reposito-
ries of archived data. Moreover, online storage versioning
offers a new range of possibilities compared to simply re-
covering users’ files that are available today only in expen-

315



sive, high-end storage systems:

• Recovery from user mistakes. The users themselves
can recover accidentally deleted or modified data by
rolling-back to a saved version.

• Recovery from system corruption. In the event of
a malicious incident on a system, administrators can
quickly identify corrupted data as well as recover to a
previous, consistent system state [28, 30].

• Historical analysis of data modifications. When it is
necessary to understand how a piece of data has reached
a certain state, versioning proves a valuable tool.

Our goal in this paper is to provide online storage ver-
sioning capabilities in commodity storage systems, in a
transparent and cost-effective manner. Storage versioning
has been previously proposed and examined purely at the
filesystem level [24, 26] or at the block level [14, 31] but
being filesystem aware. These approaches to versioning
were intended for large, centralized storage servers or ap-
pliances. We argue that to build self-managed storage sys-
tems, versioning functionality should be pushed to lower
system layers, closer to the disk to offload higher system
layers [30]. This is made possible by underlying tech-
nologies that drive storage systems. Disk storage, network
bandwidth, processor speed, and main memory are reach-
ing speeds and capacities that make it possible to build
cost-effective storage systems with significant processing
capabilities [9, 11, 13, 22] that will be able to both store
vast amounts of information [13, 17] and to provide ad-
vanced functionality.

Our approach of providing online storage versioning is to
provide all related functionality at the block level. This
approach has a number of advantages compared to other
approaches that try to provide the same features either at
the application or the filesystem level. First, it provides
a higher level of transparency and in particular is com-
pletely filesystem agnostic. For instance, we have used
our versioned volumes with multiple, third party, filesys-
tems without the need for any modifications. Data snap-
shots can be taken on demand and previous versions can
be accessed online simultaneously with the current ver-
sion. Second, it reduces complexity in higher layers of
storage systems, namely the filesystem and storage man-
agement applications [15]. Third, it takes advantage of the
increased processing capabilities and memory sizes of ac-
tive storage nodes and offloads expensive host-processing
overheads to the disk subsystem, thus, increasing the scal-
ability of a storage archival system [15].

However, block-level versioning poses certain challenges
as well: (i) Memory and disk space overhead: Because we
only have access to blocks of information, depending on
application data access patterns, there is increased danger

for higher space overhead in storing previous versions of
data and the related metadata. (ii) I/O path performance
overhead: It is not clear at what cost versioning function-
ality can be provided at the block-level. (iii) Consistency
of the versioned data when the versioned volume is used in
conjunction with a filesystem. (iv) Versioning granularity:
Since versioning occurs at a lower system layer, informa-
tion about the content of data is not available, as is, for
instance, the case when versioning is implemented in the
filesystem or the application level. Thus, we only have ac-
cess to full volumes as opposed to individual files.

We design Clotho2, a system that provides versioning at
the block-level and addresses all above issues, demonstrat-
ing that this can be done at minimal space and perfor-
mance overheads. First, Clotho has low memory space
overhead and uses a novel method to avoid copy-on-write
costs when the versioning extent size is larger than the
block size. Furthermore, Clotho employs off-line differen-
tial compression (or diffing) to reduce disk space overhead
for archived versions. Second, using advanced disk man-
agement algorithms, Clotho’s operation is reduced in all
cases to simply manipulating pointers in in-memory data
structures. Thus, Clotho’s common-path overhead follows
the rapidly increasing processor-memory curve and does
not depend on the much lower disk speeds. Third, Clotho
deals with version consistency by providing mechanisms
that can be used by higher system layers to guarantee that
either all data is consistent or to mark which data (files)
are not. Finally, we believe that volumes are an appropri-
ate granularity for versioning policies. Given the amounts
of information that will need to be managed in the future,
specifying volume-wide policies and placing files on vol-
umes with the appropriate properties, will result in more
efficient data management.

We implement Clotho as an additional layer (driver) in
the I/O hierarchy of Linux. Our implementation approach
allows Clotho the flexibility to be inserted in many dif-
ferent points in the block layer hierarchy in a single ma-
chine, a clustered I/O system, or a SAN. Clotho works
over simple block devices such as a standard disk driver or
more advanced device drivers such as volume managers or
hardware/software RAIDs. Furthermore, our implementa-
tion provides to higher layers the abstraction of a standard
block device and thus, can be used by other disk drivers,
volume/storage managers, object stores or filesystems.

We evaluate our implementation with both microbench-
marks as well as real filesystems and the SPEC SFS 3.0
suite over NFS. The main memory overhead of Clotho for
metadata is about 500 Kbytes per GByte of disk space and
can be further reduced by using larger extents. Moreover,
the performance overhead of Clotho for I/O operations is

2Clotho, one of the Fates in ancient Greek mythology, spins the thread
of life for every mortal.

316



minimal, however, it may change the behavior of higher
layers (including the filesystem), especially if they make
implicit assumptions about the underlying block device,
e.g. the location of disk blocks. In such cases, co-design
of the two layers, or system tuning maybe necessary to
not degrade system performance. Overall, we find that our
approach is promising in offloading significant manage-
ment overhead and complexity from higher system layers
to the disk itself and is a concrete step towards building
self-managed storage systems.

The rest of this paper is organized as follows. Section 2.
presents our design and discusses the related challenges
in building block-level versioning systems. Section 3.
presents our implementation. Section 4. presents our ex-
perimental evaluation and results. Section 5. discusses re-
lated work, while section 6. presents limitations and future
work. Finally, Section 7. draws our conclusions.

2. System Design

The design of Clotho is driven by the following high-level
goals and challenges:

• Flexibility and transparency.

• Low metadata footprint and low disk space overhead.

• Low-overhead common I/O path operation.

• Consistent online snapshots.

Next we discuss how we address each of these challenges
separately.

2.1. Flexibility and Transparency

Clotho provides versioned volumes to higher system lay-
ers. These volumes look similar to ordinary physical disks
that can, however, be customized, based on user-defined
policies to keep previous versions of the data they store.
Essentially, Clotho provides a set of mechanisms that allow
the user to add time as a dimension in managing data by
creating and manipulating volume versions. Every piece
of data passing through Clotho is indexed based not only
on its location on the block device, but also on the time
the block was written. When a new version is created, a
subsequent write to a block will create a new block pre-
serving the previous version. Multiple writes to the same
data block between versions result in overwriting the same
block. Using Clotho, device versions can be captured ei-
ther on demand or automatically at prespecified periods.
The user can view and access all previous versions of the
data online, as independent block devices along with the
current version. The user can compact and/or delete previ-
ous volume versions. In this work we focus on the mech-

anisms Clotho provides and we only present simple poli-
cies we have implemented and tested ourselves. We expect
that systems administrators will further define their own
policies in the context of higher-level storage management
tools.

Clotho provides a set of primitives (mechanisms) that
higher-level policies can use for automatic version man-
agement:

• CreateVersion() provides a mechanism for cap-
turing the lower-level block device’s state into a version.

• DeleteVersion() explicitly removes a previously
archived version and reclaims the corresponding vol-
ume space.

• ListVersions() shows all saved version of a spe-
cific block device.

• ViewVersion() enables creating a virtual device
that corresponds to a specific version of the volume and
is accessible in read-only mode.

• CompactVersion() and UncompactVer-
sion() provide the ability to compact and uncompact
existing versions for reducing disk space overhead.

Versions of a volume have the following properties: Each
version is identified by a unique version number, which
is an integer counter starting from value 0 and increasing
with each new version. Version numbers are associated
with timestamps for presentation purposes. All blocks of
the device that are accessible to higher layers during a pe-
riod of time will be part of the version of the volume taken
at that moment (if any) and will be identified by the same
version number. Each of the archived versions exists solely
in read-only state and will be presented to the higher levels
of the block I/O hierarchy as a distinct, virtual, read-only
block device. The latest version of a device is both read-
able and writable, exists through the entire lifetime of the
Clotho’s operation, and cannot be deleted.

Clotho can be inserted arbitrarily in a system’s layered
block I/O hierarchy. This stackable driver concept has
been employed to design other block-level I/O abstrac-
tions, such as software RAID systems or volume man-
agers, in a clean and flexible manner [31]. The input
(higher) layer can be any filesystem or other block-level
abstraction or application, such as a RAID, volume man-
ager, or another storage system. Clotho accepts block
I/O requests (read, write, ioctl) from this layer. Similarly,
the output (lower) layer can be any other block device or
block-level abstraction. This design provides greatflexibil-
ity in configuring a system’s block device hierarchy. Fig-
ure 1 shows some possible configurations for Clotho. On
the left part of Figure 1, Clotho operates on top of a physi-
cal disk device. In the middle, Clotho acts as a wrapper of
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Figure 1: Clotho in the block device hierarchy.

a single virtual volume constructed by a volume manager,
which abstracts multiple physical disks. In this configura-
tion Clotho captures versions of the whole virtual volume.
On the right side of Figure 1, Clotho is layered on top of a
RAID controller which adds reliability to the system. The
result is a storage volume that is both versioned and can
tolerate disk failures.

Most higher level abstractions that are built on top of exist-
ing block devices assume a device of fixed size, with few
rare exceptions such as resizable filesystems. However,
the space taken by previous versions of data in Clotho,
depends on the number and the amount of modified data
between them. Clotho can provide both a fixed size block
device abstraction to higher layers, as well as dynamically
resizable devices, if the higher layers support it. At device
initialization time Clotho reserves a configurable percent-
age of the available device space for keeping previous ver-
sions of the data. This essentially partitions (logically not
physically) the capacity of the wrapped device into two
logical segments as illustrated in Figure 2. The Primary
Data Segment (PDS), which contains the data of the cur-
rent (latest) version and the Backup Data Segment (BDS),
which contains all the data of the archived versions. When
BDS becomes full, Clotho simply returns an appropriate
error code and the user has to reclaim parts of the BDS
by deleting or compacting previous versions, or by mov-
ing them to some other device. These operations can also
be performed automatically by a module that implements
high-level data management policies. The latest version
of the block device continues to be available and usable at
all times. Clotho enforces this capacity segmentation by
reporting as its total size to the input layer, only the size
of the PDS. The space reserved for storing versions is hid-
den from the input layer and is accessed and managed only
through the API provided by Clotho.

Finally, Clotho’s metadata needs to be saved on the output
device along with the actual data. Losing metadata used
for indexing extents would render the data stored through-
out the block I/O hierarchy unusable. This is similar to

most block-level abstractions, such as volume managers,
and software RAID devices. Clotho stores metadata to the
output device periodically. The size of the metadata de-
pends on the size of the encapsulated device and the extent
size. In general, Clotho’s metadata are much less than the
metadata of a typical filesystem and thus, saving them to
stable storage is not an issue.

2.2. Reducing Metadata Footprint

The three main types of metadata in Clotho are the Logical
Extent Table (LXT), the Device Version List (DVL), and
the Device Superblock (DSB).

The Logical Extent Table (LXT) is a structure used for log-
ical to physical block translation. Clotho presents to the
input layer logical block numbers as opposed to the phys-
ical block numbers provided by the wrapped device. Note
that these block numbers need not directly correspond to
actual physical locations, if another block I/O abstraction,
such as a volume manager (e.g. LVM [32]) is used as the
output layer. Clotho uses the LXT to translate logical block
numbers to physical block numbers.

The Device Version List (DVL) is a list of all versions of
the output device that are available to higher layers as sep-
arate block devices. For every existing version, it stores its
version number, the virtual device it may be linked to, the
version creation timestamp, and a number of flags.

The Device Superblock (DSB) is a small table contain-
ing important attributes of the output versioned device. It
stores information about the capacity of the input and out-
put device, the space partitioning, the size of the extents,
the sector and block size, the current version counter, the
number of existing versions and other usage counters.

The LXT is the most demanding type of metadata and is
conceptually an array indexed by block numbers. The ba-
sic block size for most block devices varies between 512
Bytes (the size of a disk sector) and 8 KBytes. This results
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Figure 2: Logical space segments in Clotho.

in large memory requirements. For instance, for 1 TByte
of disk storage with 4-KByte blocks, the LXT has 256M
entries. In the current version of Clotho, every LXT en-
try is 128-bits (16 bytes). These include 32 bits for block
addressing and 32 bits for versions that allow for a prac-
tically unlimited number of versions. Thus, the LXT re-
quires about 4 GBytes per TByte of disk storage. Note that
a 32-bit address space, with 4 KByte blocks, can address
16 TBytes of storage.

To reduce the footprint of the LXT and at the same time
increase the addressing range of LXT, we use extents as
opposed to device blocks as our basic data unit. An extent
is a set of consecutive (logical and physical) blocks. Ex-
tents can be thought as Clotho’s internal block size, which
one can configure to arbitrary sizes, up to several hundred
KBytes or a few MBytes. Similarly to physical and logi-
cal blocks, we denote extents as logical (input) extents or
physical (output) extents. We have implemented and tested
extent sizes ranging from 1 KByte to 64 KBytes. With 32-
KByte extents and subextent addressing, we need only 500
MBytes of memory per TByte of storage. Moreover with
a 32-KByte extent size we can address 128 TBytes of stor-
age.

However, large extent sizes may result in significant per-
formance overhead. When the extent size and the oper-
ating system block size for Clotho block devices are the
same (e.g. 4KBytes), Clotho receives from the operating
system the full extent for which it has to create a full ver-
sion. When using extents larger than this maximum size,
Clotho sees only a subset of the extent for which it needs
to create a new version. Thus, it needs to copy the rest
of the extent in the new version, even though only a small
portion of it written by the higher system layers. This copy
can significantly decrease performance in the common I/O
path, especially for large extent sizes. However, large ex-
tents are desirable for reducing metadata footprint. Given
that operating systems support I/O blocks of up to a max-
imum size (e.g. 4K in Linux), this may result in severe
performance overheads.

0 1 0 0

4−KByte extent

0 0 01

32−KByte extent with
4−KByte subextents

Valid subextent
bitmap

Device Block Size (input and output): 4 Kbytes

Figure 3: Subextent addressing in large extents.

To address this problem we use subextent addressing. Us-
ing a small (24-bit) bitmap in each LXT entry we need not
copy the whole extent in a partial update. Instead we just
translate the block write to a subextent of the same size and
mark it in the subextent bitmap as valid, using just 1 bit. In
a subsequent read operation we search for the valid subex-
tents in the LXT before translating the read operation. For
a 32-Kbyte extent size, we need only 8 bits in the bitmap
for 4-KByte subextents.

Another possible approach to reduce memory footprint is
to store only part of the metadata in main memory and
perform swapping of active metadata from stable storage.
However, this solution is not adequate for storage systems
where large amounts of data need to be addressed. More-
over it is orthogonal to subextent addressing and can be
combined with it.

2.3. Version Management Overhead

All version management operations can be performed at a
negligible cost by manipulating in-memory data structures.
Creating a new version in Clotho involves simply incre-
menting the current version counter and does not involve
copying any data. When CreateVersion() is called,
Clotho stalls all incoming I/O requests for the time re-
quired to flush all its outstanding writes to the output layer.
When everything is synchronized on stable storage, Clotho
increases the current version counter, appends a new entry
to the device version list, and creates a new virtual block
device that can be used to access the captured version of
the output device, as explained later. Since each version
is linked to exactly one virtual device, the (OS-specific)
device number that sends the I/O request can be used to
retrieve the I/O request’s version.

The fact that device versioning is a low-overhead opera-
tion makes it possible to create flexible versioning poli-
cies. Versions can be created by external processes peri-
odically or based on system events. For instance, the user
processes can specify that it requires a new version every
1 hour, or whenever all files to the device are closed or on
every single write to the device. Some of the mechanisms
to detect such events, e.g. if there are any open files on a
device, may be (and currently are) implemented in Clotho
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but could also be provided by other system components.

In order to free backup disk space, Clotho provides a
mechanism to delete volume versions. On a DeleteV-
ersion() operation, Clotho traverses the primary LXT
segment and for every entry that has a version number
equal to the delete candidate, changes the version num-
ber to the next existing version number. It then traverses
the backup LXT segment and frees the related physi-
cal extents. As with version creation, all operations for
version deletion are performed in-memory and can over-
lap with regular I/O. DeleteVersion() is provided to
higher layer in order to implement version cleaning poli-
cies. Since storage space is finite, such policies are neces-
sary in order to continue versioning without running out of
backup storage. Finally, even if the backup data segment
(BDS) is full, I/O to the primary data segment and the lat-
est version of data can continue without interruption.

2.4. Common I/O Path Overhead

We consider the common path for Clotho, as the I/O path
to read and write to the latest (current) version of the out-
put block device, while versioning occurs frequently. Ac-
cesses to older versions are of less importance since they
are not expected to occur as frequently as current version
usage. Accordingly, we divide read and write access to
volume versions in two categories, accesses to the current
version and accesses to any previous version. The main
technique to reduce common path overhead is to divide
the LXT in two logical segments, corresponding to the pri-
mary and backup data segments of the output device as
illustrated in Figure 2. The primary segment of the LXT
(mentioned as PLX in figures) has an equal number of logi-
cal extents as the input layer to allow a direct, 1-1 mapping
between the logical extents and the physical extents of the
current version on the output device. By using a direct, 1-1
mapping, Clotho can locate a physical extent of the current
version of a data block with a single lookup in the primary
LXT segment, when translating I/O requests to the current
version of the versioned device. If the input device needs
to access previous versions of a versioned output device,
then multiple accesses to the LXT maybe required to lo-
cate the appropriate version of the requested extent.

To find the physical extent that holds the specific version
of the requested block, Clotho first references the primary
LXT segment entry to locate the current version of the
requested extent (a single table access). Then it uses the
linked list that represents the version history of the extent
to locate the appropriate version of the requested block.
Depending on the type of each I/O request and the state
of the requested block, I/O requests can be categorized as
follows:

Write requests can only be performed on the current ver-
sion of a device, since older versions are read-only. Thus,
Clotho can locate the LXT entry of a current version ex-
tent with a single LXT access. Write requests can be one
of three kinds as shown in Figure 4:

a. Writes to new, unallocated blocks. In this case, Clotho
calls its extent allocator module, which returns an avail-
able physical extent of the output device, it updates the
corresponding entry in the LXT, and forwards the write
operation to the output device. The extent allocation
policy in our current implementation is a scan-type pol-
icy, starting from the beginning of the PDS to its end.
Free extents are ignored until we reach the end of the
device, when we rewind the allocation pointer and start
allocating the free extents.

b. Writes to existing blocks that have been modified after
the last snapshot was captured (i.e. their version number
is equal to the current version number). In this case
Clotho locates the corresponding entry in the primary
LXT segment with a single lookup and translates the
request’s block address to the existing physical block
number of the output device. Note that in this case the
blocks are updated in place.

c. Writes to existing blocks that have not been modified
since the last snapshot was captured (i.e. their version
number is lower than the current version number). The
data in the existing physical extent must not be over-
written, but instead the new data should be written in a
different location and a new version of the extent must
be created. Clotho allocates a new LXT entry in the
backup segment and swaps the old and new LXT entries
so that the old one is moved to the backup LXT seg-
ment. The block address is then translated to the new
physical extent address, and the request is forwarded to
the output layer. This “swapping” of LXT entries main-
tains the 1-1 mapping of current version logical extents
in the LXT which optimizes common-path references to
a single LXT lookup.

This write translation algorithm allows for independent,
fine grain versioning at the extent level. Every extent in
the LXT is versioned according to its updates from the in-
put level. Extents that are updated more often have more
versions than extents written less frequently.

Read request translation is illustrated in Figure 5. First
Clotho determines the desired version of the device by
the virtual device name and number in the request (e.g.
/dev/clt1-01 corresponds to version 1 and /dev/clt1-02 to
version 2). Then, Clotho traverses the version list on the
LXT for the specific extent or subextent and locates the
appropriate physical block.
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Figure 4: Translation path for write requests.
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Figure 5: Translation path for read requests.

Finally, previous versions of a Clotho device appear as dif-
ferent virtual block devices. Higher layers, e.g. filesys-
tems, can use these devices to access old versions of the
data. If the device id of a read request is different from
the normal input layer’s device id, the read request refers
to an extent belonging to a previous version. Clotho de-
termines from the device id the version of the extent re-
quested. Then, it traverses the version list associated with
this extent to locate the backup LXT entry that holds the
appropriate version of the logical extent. This translation
process is illustrated in Figure 5.

2.5. Reducing Disk Space Requirements

Since Clotho operates at the block level, there is an induced
overhead in the amount of space it needs to store data up-
dates. If an application for instance, using a file modifies a
few consecutive bytes in the file, Clotho will create a new
version for the full block that contains the modified data.
To reduce the space overhead in Clotho we provide a dif-
ferential, content-based compaction mechanism, which we
describe next.

Clotho provides the user with the ability to compact de-
vice versions and still be able to transparently access them
online. The policy decision on when to compact a ver-
sion is left to higher-layers in the system, similarly to all
policy decisions in Clotho. We use a form of binary dif-
ferential compression [1] to only store the data that has
been modified since the last version capture. When Com-
pactVersion() is called, Clotho constructs a differen-
tial encoding (or delta) between the blocks that belong to
a given version with corresponding blocks in its previous
version [1]. Although a lot of differential policies can be
applied in this case, such as to compare the content of a
specific version with its next version, or both the previous
and the next version, at this stage we only explore diff-
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Figure 6: Read translation for compact versions.

ing with the previous version. Furthermore, although ver-
sions can also be compressed independently of differential
compression using algorithms such as Lempel-Ziv encod-
ing [37] or Wheeler-Burrows encoding [3], this is beyond
the scope of our work. We envision that such functionality
can be provided by other layers in the I/O device stack.

The differential encoding algorithm works as follows.
When a compaction operation is triggered, the algorithm
runs through the backup data segment of the LXT and lo-
cates the extents that belong to the version under consid-
eration. If an extent does not have a previous version, it
is not compacted. For each of the extents to be compacted
the algorithm locates its previous version, diffs the two ex-
tents, and writes the diffs to a physical extent on the output
device. If the diff size is greater than a threshold and diff-
ing is not very effective, then Clotho discards this pair and
proceeds with the next extent of the version to be com-
pacted. In other words, Clotho’s differential compression
algorithm works selectively on the physical extents, com-
pacting only the extents that can be reduced in size. The
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rest are left in their normal format to avoid performance
penalties necessary for their reconstruction.

Since the compacted form of an extent requires less size
than a whole physical extent, the algorithm stores multi-
ple deltas in the same physical extent, effectively imposing
a different structure on the output block device. Further-
more, for compacted versions, multiple entries in the LXT
may point to the same physical extent. The related entries
in the LXT and the ancestor extent are kept in Clotho’s
metadata. Physical extents that are freed after compaction
are reused for storage. Figure 6 shows sample LXT map-
pings for a compacted version of the output layer.

Data on a compacted version can be accessed transparently
online as data on uncompacted volumes (Figure 6). Clotho
follows the same path to locate the appropriate version of
the logical extent in the LXT. To recreate the original, full
extent data we need the differential data of the previous
version of the logical extent. With this information Clotho
can reconstruct the requested block and return it to the in-
put driver. We evaluate the related overheads in Section 4..

Clotho supports recursive compaction of devices. The next
version of a compacted version can still be compacted.
Also, compacted versions can be uncompacted to their
original state with the reverse process. A side-effect of
the differential encoding concept is that it creates depen-
dences between two consecutive versions of a logical ex-
tent, which affects the way versions are accessed, as ex-
plained next.

When deleting versions, Clotho checks for dependencies
of compacted versions on a previous version and does not
delete extents that are required for un-diffing, even if their
versions are deleted. These logical extents are marked as
"shadow" and are attached to the compacted version. It
is left to higher-level policies to decide if keeping such
blocks increases the space overhead and it would be bet-
ter to uncompact the related version and delete any shadow
logical extents.

2.6. Consistency

One of the main issues in block device versioning at ar-
bitrary times is consistency of the stored data. There are
three levels of consistency for online versioning:

System state consistency: This refers to consistency of sys-
tem buffers and data structures that are used in the I/O path.
To deal with this, Clotho flushes all device buffers in the
kernel as well as filesystem metadata before version cre-
ation. This guarantees that the data and metadata on the
block device correspond to a valid snapshot of the filesys-
tem at a point-in-time. That is, there are no consistency
issues in internal system data structures.

Open file consistency: When a filesystem is used on top of
a versioned device, certain files may be open at the time
of a snapshot. Although Clotho does not deal with this
issue, it provides a mechanism to assist users. When a
new version is created, Clotho’s user-level module queries
the system for open files on the particular device. If such
files are open, Clotho creates a special directory with links
to all open files and includes the directory in the archived
version. Thus, when accessing older versions the user can
find out which files were open at versioning time.

Application consistency: Applications using the versioned
volume may have a specialized notion of consistency. For
instance, an application may be using two files that are
both updated atomically. If a version is created after the
first file is updated and closed but before the second one is
open and updated, then, although no files were open dur-
ing version creation, the application data may still be in-
consistent. This type of consistency is not possible to deal
with transparently without application knowledge or sup-
port, and thus, is not addressed by Clotho.

3. System Implementation

We have implemented Clotho as a block device driver
module in the Linux 2.4 kernel and a user-level control
utility, in about 6,000 lines of C code. The kernel mod-
ule can be loaded at runtime and configured for any output
layer device by means of an ioctl() command triggered
by the user-level agent. After configuring the output layer
device, the user can manipulate the Clotho block device
depending on the higher layer that they want to use. For
instance, the user can build a filesystem on top of a Clotho
device with mkfs or newfs and then mount it as a regu-
lar filesystem.

Our module adheres to the framework of block I/O devices
in the Linux kernel and provides two interfaces to user pro-
grams: an ioctl command interface and a /proc inter-
face for device information and statistics. All operations
described in the design section to create, delete, and man-
age version have been implemented through the ioctl
interface and are initiated by the user-level agent. The
/proc interface provides information about each device
version through readable ASCII files. Clotho also uses
this interface to report a number of statistics, including the
times of creation, a version’s time span, the size of mod-
ified data from the previous version and some specific in-
formation to compacted versions, such as the compaction
level and the number of shadow extents.

The Clotho module uses the zero-copy mechanism of the
make request fn() fashion that is used by LVM [32].
With this mechanism Clotho is able to translate the device
driver id (kdev t) and the sector address of a block re-
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quest (struct buffer head) and redirect it to other
devices with minimal overhead. To achieve persistence of
metadata, Clotho uses a kernel thread created at module
load time, which flushes the metadata to the output layer at
configurable (currently 30s) intervals.

The virtual device creation uses the partitionable block de-
vice concepts in the Linux kernel. A limit in the Linux ker-
nel minor numbering is that there can be at most 255 minor
numbers for a specific device and thus, only 255 versions
can be seen simultaneously as partitions of Clotho. How-
ever, the number of partitions supported by Clotho can be
much larger. To overcome this limitation we have created a
mechanism through an ioctl call that allows the user to
link and unlink on demand any of the available versions to
any of the 255 minor number partitions of a Clotho device.
As mentioned, each of these partitions is read-only and can
be used as a normal block device, e.g. can be mounted to a
mount-point.

4. Experimental Results

Our experimental environment consists of two identical
PCs running Linux. Each system has two Pentium III 866
MHz CPUs, 768 MBytes of RAM, an IBM-DTLA-307045
ATA Hard Disk Drive with a capacity of 46116 MBytes
(2-MByte cache), and a 100MBps Ethernet NIC. The op-
erating system is Red Hat Linux 7.1, with the 2.4.18 SMP
kernel. All experiments are performed on a 21-GByte par-
tition of the IBM disk. With a 32-KByte extent, we need
only 10.5 MBytes of memory for our 21-GByte partition.

Although a number of system parameters are worth inves-
tigation, we evaluate Clotho with respect to two param-
eters: memory and performance overhead. We use two
extent sizes, 4 and 32 KBytes. Smaller extent sizes have

higher memory requirements. For our 21-GByte partition,
Clotho with 4-KByte extent size uses 82 MBytes of in-
memory metadata, the dirty parts of which are flushed
to disk every 30 seconds. We evaluate Clotho using
both microbenchmarks (Bonnie++ version 1.02 [4] and an
in-house developed microbenchmark) and real-life setups
with production-level filesystems. The Bonnie++ bench-
mark is a publicly available filesystem I/O benchmark [4].
For the real-life setup we run the SPEC SFS V3.0 suite on
top of two well-known Linux filesystems, Ext2FS, and the
high-performance journaled ReiserFS [20]. In our results
we use the label Disk to denote experiments with the regu-
lar disk, without the Clotho driver on top.

4.1. Bonnie++

We use the Bonnie++ microbenchmark to quantify the ba-
sic overhead of Clotho. The filesystem we use in all Bon-
nie++ experiments is the Ext2FS with a 4-KByte extent
size. The size of the file to be tested is 2 GBytes with block
sizes ranging from 1 KByte to 64 KBytes. We measure ac-
cesses to the latest version of a volume with the following
operations:

• Block Write: A large file is created using the write()
system call.

• Block Rewrite: Each block of the file is read with
read(), dirtied, and rewritten with write(), requir-
ing an lseek().

• Block Read: The file is read using a read() for every
block.

• Random Seek: Processes running in parallel are per-
forming lseek() to random locations in the file and
read()ing the corresponding file blocks.
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Figure 9: SPEC SFS response time using 4-KByte extents.
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Figure 10: SPEC SFS throughput using 4-KByte extents.
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Figure 12: SPEC SFS throughput using 32-Kbyte extents
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Figure 7 shows that the overhead in write throughput is
minimal and the two curves are practically the same. In
the read throughput case, Clotho performs slightly better
than the regular disk. We believe this is due to the logging
(sequential) disk allocation policy that Clotho uses. In the
rewrite case, the overhead of Clotho becomes more signif-
icant. This is due to the random “seek and read” operation
overhead, as shown in Figure 8. Since the seeks in this
experiment are random, Clotho’s logging allocation has
no effect and the overhead of translating I/O requests and
flushing filesystem metadata to disk dominates. Even in
this case, however, the overhead observed is at most 7.5%
of the regular disk.

4.2. SPEC SFS

We use the SPEC SFS 3.0 benchmark suite to mea-
sure NFS file server throughput and response time over
Clotho. We use one NFS client and one NFS server.
The two systems that serve as client and server are

connected with a switched 100 MBit/s Ethernet net-
work. We use the following settings: NFS version
3 protocol over UDP/IP, one NFS exported directory,
biod max read=2, biod max write=2, and re-
quested loads ranging from 300 to 1000 NFS V3 opera-
tions/s with a 100 increment step. Both warm-up and run
time are 300 seconds for each run and the time for all the
SPEC SFS runs in sequence is approximately 3 hours. As
mentioned above, we report results for the Ext2FS and
ReiserFS (with -notail option) filesystems [20]. A new
filesystem is created before every experiment.

We conduct four experiments with SPEC SFS for each of
the two filesystems: Using the plain disk, using Clotho
over the disk without versioning, using Clotho and ver-
sioning every 5 minutes, and using Clotho with 10 minute
versioning. Versioning is performed throughout the en-
tire 3 hour run of SPEC SFS. Figures 9 and 10 show our
throughput and latency results for 4-Kbyte extents, while
Figures 11 and 12 show the results using 32-KByte extents
with subextent addressing.
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Our results show that Clotho outperforms the regular disk
in all cases except ReiserFS without versioning. The
higher performance is due to the logging (sequential) block
allocation policy that Clotho uses. This explanation is rein-
forced by the performance in the cases where versions are
created periodically. In this case, frequent versioning pre-
vents disk seeks caused by overwriting of old data, which
are now written to new locations on the disk in a sequential
fashion. Furthermore, we observe that the more frequent
the versioning, the higher the performance. The 32-KByte
extent size experiments (Figures 11 and 12) show that even
with much lower memory requirements, subextent map-
ping offers almost the same performance as the 4-KByte
case. We attribute this small difference to the disk rota-
tional latency, when skipping unused space to write subex-
tents, while in the 4-KByte extent size, the extents are writ-
ten “back-to-back” in a sequential manner.

Finally, comparing the two filesystems, Ext2 and ReiserFS,
we find that the latter performs worse on top of Clotho. We
attribute this behavior to the journaled metadata manage-
ment of ReiserFS. While Ext2 updates metadata in place,
ReiserFS appends metadata updates to a journal. This
technique in combination with Clotho’s logging disk al-
location appears to have a negative effect on performance
in the SPEC SFS workload, compared to Ext2.

4.3. Compact version performance

Finally, we measure the read throughput of compacted ver-
sions to evaluate the space-time tradeoff of diff-based com-
paction. Since old versions are only accessible in read-only
mode, we developed a two-phase microbenchmark that
performs only read operations. In the first stage, our mi-
crobenchmark writes a number of large files and captures
multiple versions of the data through Clotho. In writing
the data the benchmark is also able to control the amount

of similarity between two versions, and thus, the percent-
age of space required by compacted versions. In the sec-
ond stage, our benchmark mounts a compacted version
and performs 2000 random read operations on the files of
the compacted version. Before every run, the benchmark
flushes the system’s buffer cache.

Figures 13 and 14 present latency and throughput results
for different percentages of compaction. For 100% com-
paction, the compacted version takes up minimal space on
the disk, whereas in the 0% case compaction is not space-
effective at all. The difference in performance is mainly
due to the higher number of disk accesses per read opera-
tion required for compacted versions. Each such read op-
eration requires two disk reads to reconstruct the requested
block. One read to fetch the block of the previous version
and one to fetch the diffs. In particular, with 100% com-
paction, each and every read results in two disk accesses
and thus, performance is about half of the 0% compaction
case.

5. Related Work

A number of projects have highlighted the importance and
issues in storage management [13, 16, 22, 36]. Our goal in
this work is to define innovative functionality that can be
used in future storage protocols and APIs to reduce man-
agement overheads.

Block-level versioning was recently discussed and used in
WAFL [14], a file system designed for Network Appli-
ance’s NFS appliance. WAFL works in the block-level of
the filesystem and can create up to 20 snapshots of a vol-
ume and keep them available online through NFS. How-
ever, since WAFL is a filesystem and works in an NFS ap-
pliance, this approach depends on the filesystem. In our
work we demonstrate that Clotho is filesystem agnostic
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by presenting experimental data with two production-level
filesystems. Moreover, WAFL can manage a limited num-
ber of versions (up to 20), whereas Clotho can manage a
practically unlimited number. The authors in [14] men-
tion that WAFL’s performance cannot be compared to other
general purpose file systems, since it runs on a specialized
NFS appliance and much of its performance comes from
its NFS-specific tuning. The authors in [15] use WAFL to
compare the performance of filesystem- and block-level-
based snapshots (within WAFL). They advocate the use
of block-level backup, due to cost and performance rea-
sons. However, they do not provide any evidence on the
performance overhead of block-level versioned disks com-
pared to regular, non-versioned block devices. In our work
we thoroughly evaluate this with both microbenchmarks as
well as standard workloads. SnapMirror [23] is an exten-
sion of WAFL, which introduces management of remote
replicas in WAFL’s snapshots to optimize data transfer and
ensure consistency.

Venti [27] is a block-level network storage service, in-
tended as a repository for backup data. Venti follows a
write-once storage model and uses content based address-
ing by means of hash functions to identify blocks with
identical content. Instead, Clotho uses differential com-
pression concepts. Furthermore, Venti does not supper ver-
sioning features. Clotho and Venti are designed to perform
complementary tasks, the former to version data and the
latter as a repository to store safely the archived data blocks
over the network. Distributed block-level versioning sup-
port was included in Petal [7]. Although the concepts are
similar to Clotho, Petal also targets networks of worksta-
tions as opposed to active storage devices.

Since backup and archival of data is an important problem,
there are many products available that try to address the
related issues. However, specific information about these
systems and their performance with commodity hardware,
filesystems, or well-known benchmarks are scarce. Live-
Backup [29] captures changes at the file level on client ma-
chines and sends modifications to a back-end server that
archives previous file versions. EMC’s SnapView [8] runs
on the CLARiiON storage servers at the block level and
uses a ”copy-on-first-write” algorithm. However, it can
capture only up to 8 snapshots and its copy algorithm does
not use logging block allocation to speed up writes. In-
stead, it copies the old block data to hidden storage space
on every first write, overwriting another block. Veritas’s
FlashSnap [35] software works inside the Veritas File Sys-
tem, and thus, unlike Clotho, is not filesystem agnostic.
Furthermore it supports only up to 32 snapshots of vol-
umes. Sun’s Instant Image [31] works also at the block-
level in the Sun StorEdge storage servers. Its operation
appears similar to Clotho. However, it is used through
drivers and programs in the Sun’s StorEdge architecture,

which runs only through the Solaris architecture and is also
filesystem aware.

Each of the above systems, especially the commercial
ones, uses proprietary customized hardware and sys-
tem software, which makes comparisons with commod-
ity hardware and general purpose operating systems dif-
ficult. Moreover, these systems are intended as standalone
services within centralized storage appliances, whereas
Clotho is designed as a transparent autonomous block-
lever layer for active storage devices and appropriate for
pushing functionality closer to the physical disk. In this di-
rection, Clotho categorizes the challenges of implementing
block-level versioning and addresses the related problems.

The authors in [6] examine the possibility of introducing
an additional layer in the I/O device stack to provide cer-
tain functionality at lower system layers, which also affect
the functionality that is provided by the filesystem. Other
efforts in this direction, mostly include work in logical vol-
ume management and storage virtualization that try to cre-
ate a higher level abstraction on-top of simple block de-
vices. The authors in [32] present a survey of such sys-
tems for Linux. Such systems usually provide the abstrac-
tion of a block-level volume that can be partitioned, ag-
gregated, expanded, or shrunk on demand. Other such ef-
forts [18] add RAID capabilities to arbitrary block devices.
Our work is complementary to these efforts and proposes
adding versioning capabilities to the block-device level.

Other previous work in versioning data has mostly been
performed either at the filesystem layer or at higher lay-
ers. The authors in [26] propose versioning of data at the
file level, discussing how the filesystem can transparently
maintain file versions as well as how these can be cleaned
up. The authors in [19] try to achieve similar functional-
ity by providing mount points to previous versions of di-
rectories and files. They propose a solution that does not
require kernel-level modification but relies on a set of user
processes to capture user requests to files and to communi-
cate with a back-end storage server that archives previous
file versions. Other, similar efforts [21, 24, 25, 28, 30]
approach the problem at the filesystem level as well and
either provide the ability for checkpointing of data or ex-
plicitly manage time as an additional file attribute.

Self-securing storage [30] and its filesystem, CVFS [28]
target secure storage systems and operate at the filesys-
tem level. Some of the versioning concepts in self-securing
storage and CVFS are similar to Clotho, but there are nu-
merous differences as well. The most significant one is
that self-securing storage policies are not intended for data
archiving and thus, retain versions of data for a short pe-
riod of time called detection window. No versions are
guaranteed to exist outside this window of time and no
version management control is provided for specifying
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higher-level policies. CVFS introduces certain interest-
ing concepts for reducing metadata space, which however,
are also geared towards security and are not intended for
archival purposes. Since certain concepts in [28, 30] are
similar to Clotho, we believe that a block-level self-secure
storage system could be based on Clotho, separating the
orthogonal versioning and security functionalities in dif-
ferent subsystems.

6. Limitations and Future work

The main limitation of Clotho is that it cannot be layered
below abstractions that aggregate multiple block devices
in a single volume and cannot be used with shared block
devices transparently. If Clotho is layered below a vol-
ume abstraction that performs aggregation and on top of
the block devices that are being aggregated in a single vol-
ume, policies for creating versions need to perform syn-
chronized versioning accross devices to ensure data con-
sistency. However, this may not be possible in a transpar-
ent manner to higher system layers. The main issue here
is that it is not clear what are the semantics of versioning
parts of a “coherent”, larger volume. Furthermore, when
multiple clients have access to a shared block device, as
is usually the case with distributed block devices [7, 33],
Clotho cannot be layered on top of the shared volume in
each client, since internal metadata will become inconsis-
tent accross Clotho instances. Solutions to these problems
are interesting topics for future work.

Another limitation of Clotho is that it imposes a change in
the block layout from the input to the output layer. Clotho
acts as a filter between two block devices, transferring
blocks of data from one layer to the next. Although this
does not introduce any new issues with wasting space due
to fragmentation (e.g. for files if a filesystem is used with
Clotho), it alters significantly the data layout. Thus, it may
affect I/O performance, if free blocks are scattered over the
disk or if higher layers rely on a specific block mapping,
e.g. block 0 being the first block on the disk, block 1 the
second, etc. However, this is an issue not only with Clotho,
but with any layer in the I/O hierarchy that performs block
remapping, such as RAIDs and some volume managers.
Moreover, as I/O subsystems become more complex and
provide more functionality, general solutions to this prob-
lem may become necessary. Since this is beyond the scope
of this work, we do not discuss this any further here.

7. Conclusions

Storage management is an important problem in building
future storage systems. Online storage versioning can as-
sist reduce these costs directly, by addressing data archival
and retrieval costs and indirectly, by providing novel stor-

age functionality. In this work we propose pushing ver-
sioning functionality closer to the disk and implementing
it at the block-device level. This approach takes advantage
of technology trends in building active self-managed stor-
age systems to address issues related to backup and version
management.

We present a detailed design of our system, Clotho, that
provides versioning at the block-level. Clotho imposes
small memory and disk space overhead for version data
and metadata management by using large extents, sub-
extent addressing and diff-based compaction. It imposes
minimal performance overhead in the I/O path by eliminat-
ing the need for copy-on-write even when the extent size is
larger than the disk-block size and by employing logging
(sequential) disk allocation. It provides mechanisms for
dealing with data consistency and allows for flexible poli-
cies for both manual and automatic version management.

We implement our system in the Linux operating sys-
tem and evaluate its impact on I/O path performance with
both microbenchmarks as well as the SPEC SFS standard
benchmark on top of two production-level file systems,
ExtFS and ReiserFS. We find that the common path over-
head is minimal for read and write I/O operations when
versions are not compacted. For compact versions, the user
has to pay the penalty of double disk accesses for each I/O
operation that accesses a compact block.

Overall, we believe that our approach is promising in of-
floading significant management overhead and complexity
from higher system layers to the disk itself and is a con-
crete step towards building self-managed storage devices.
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Abstract 
This paper describes relationships between the Open Archival Information System 
Reference Model (OAIS RM) and the archival practices of the NOAA National 
Oceanographic Data Center (NODC). The OAIS RM defines a thorough approach to 
defining the processes, entities, and framework for maintaining digital information in an 
electronic archival environment without defining how to implement the framework. The 
NODC Archival Management System (AMS) is an example of an implementation of a 
persistent digital archive. Major OAIS RM components, such as the Submission 
Information Package, Archival Information Package, Dissemination Information 
Package, and Archival Storage are clearly comparable between the OAIS RM and the 
NODC AMS. The main participants (Producer, Consumer, Management, and OAIS) are 
represented in the NODC AMS, as are many primary functions (Ingest Process, Archive 
Process, Dissemination Process). Some important OAIS RM components, such as a 
consistent Submission Agreement and a deeper level of Preservation Description 
Information may be missing for some of the information archived in the NODC AMS. It 
is instructive to document the commonalities between the NODC system and the OAIS 
RM as the NOAA National Data Centers expand archival services for a broad and 
growing range of digital environmental data. 

 

1 Introduction 
Imagine that you are on a large ship on a calm sea with no land in sight and 3 miles of 
water beneath your feet. You are a marine biologist studying the habitat of the giant 
squid, so you want to know the range of water temperatures and salinity values, the 
available nutrients eaten by local microscopic organisms, what those organisms are and 
what visible-size sea life might be eating them. These pieces of information can be 
collected by a host of instruments you deploy over the side of the ship and lower through 
the water. The ship stops periodically to collect these measurements, which are 
electronically recorded into a series of data files that you will use later in the lab to 
characterize the conditions in which the giant squid lives. 
 
If you received funding for your research from the US Federal government, you are likely 
to be contractually obligated to send a copy of the data you collected to the National 
Oceanographic Data Center (NODC), along with enough descriptive metadata to make 
the data meaningful to others. The NODC is one of several data centers operated by the 
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U.S. Department of Commerce National Oceanic and Atmospheric Administration 
(NOAA). 
 
The NODC is believed to archive the largest collection of in situ measurements of 
oceanographic parameters in the world, with approximately 300 gigabytes of data, 
metadata, and model output stored in its digital archives (D. Knoll, NODC, pers. comm., 
2003). The NODC has recently undertaken a substantial effort to update and improve the 
archival management of these electronic environmental records and to improve access to 
the original data records in its collection. This paper examines how these new record 
management strategies and procedures relate to the Open Archival Information System 
Reference Model (OAIS RM) [1], ISO 14721:2002, which defines the major elements 
and functions of an electronic records archive. To explore the relationship between the 
OAIS RM and the new NODC Archives Management System (AMS), the first part of 
this paper provides an overview of the main features of the OAIS RM. The second part of 
the paper describes in some detail the NODC AMS in terms of the conceptual elements 
of the OAIS Reference Model. The last part of the paper discusses OAIS RM elements 
that are not yet implemented by the NODC AMS. 
 
2 OAIS Reference Model 
The OAIS Reference Model was initially developed by the Consultative Committee for 
Space Data Systems to identify the essential elements needed by an electronic records 
archive to manage records over long time scales [2]. The OAIS RM acknowledges 
technological changes that inevitably create substantial challenges for electronic records 
archives [3]. As described by Lavoie [4], an OAIS means "any organization or system 
charged with the task of preserving information over the Long Term and making it 
accessible to a specified class of users (known as the Designated Community)." In 
keeping with the practice established in the OAIS RM documentation, entities and 
procedures named in the model and discussed below will have initial capital letters (e.g., 
Producer). By definition in the OAIS RM (p. 1-11), data are archived for the Long Term, 
which is defined as "[a] period of time long enough for there to be concern about the 
impacts of changing technologies, including support for new media and data formats, and 
of a changing user community, on the information being held in a repository. This period 
extends into the indefinite future." 
 
The main participants in any OAIS are defined as Producer, Consumer, Management, and 
the OAIS archive functions. In the OAIS RM, Producer represents the people or systems 
that create and/or provide information to be preserved in the archive. Consumer 
represents the people or systems that use the OAIS to find and retrieve preserved 
information. A Designated Community may be a special subset of the domain of all 
Consumers. Management is the person or group that sets the policy for the management 
of the OAIS, among other activities: it is not responsible for the day-to-day operations of 
the OAIS. The OAIS (archive) is the system that provides for the long term storage, 
migration, and dissemination of the information that is archived. Using this model and 
the example in the Introduction to this paper, the following roles could be identified:  

• Producer: Ocean scientists (e.g., squid specialist) making measurements of 
physical, chemical, and biological conditions; 
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• Consumer (Designated community): other ocean scientists, resource managers, 
general public; 

• Management: US National Oceanographic Data Center Director and Deputy 
Director; 

• OAIS (archive): US National Oceanographic Data Center Archive Management 
System. 

 
One of the basic concepts of the Reference Model is that information is a combination of 
data and its Representation Information. Regardless of whether the data part of the 
information is physical (e.g., a giant squid) or digital (e.g., digital photographs of the 
giant squid), Representation Information allows the Consumer to fully interpret the 
meaning of the information. For digital objects, Representation Information typically 
includes some mapping of bits into recognizable data types (e.g., characters, integers). It 
also associates these mappings into higher-level groupings of data types, which are called 
Structure Information. To fully understand how to interpret the Structure Information, it 
is important to include Semantic Information, which defines the language of the Structure 
Information [5]. 
 
Another main component of the OAIS RM is the Information Object, which is comprised 
of the following components:  

• Content Information object, which is equivalent to the contents of a letter, email, 
observed data values, etc.; 

• Packaging Information object, which is information that wraps the different 
information objects into a cohesive bundle;  

• Descriptive Information object, which provides descriptive content and contextual 
information about the Content Information object;  

• Preservation Description Information object, which includes significant 
information about the electronic form and structure of the bits that can be 
translated into the Content Information object. It also includes information about 
provenance and authenticity validation characteristics of the Content Information 
object.  

 
The OAIS RM distinguishes between Information Objects based on the role that the 
Information Object performs in the information management process. Three specific 
types of Information Object are designated: the Submission Information Package (SIP), 
the Archival Information Package (AIP), and the Dissemination Information Package 
(DIP). Each Information Package contains the four information objects defined above. 
Figure 1 depicts the relationship between the components of an Information Package and 
between SIP, AIP, DIP, and Management (after Sawyer [6]). 
 

A Producer creates electronic records: the contents are the property of the Producer and 
may be in any format that is deemed useful by the Producer. Once the Producer decides 
to transfer the data to the OAIS, a Submission Agreement is negotiated between Producer 
and OAIS to define the terms of the information transfer. The OAIS may help the 
Producer in developing the SIP by providing information, tools, or other assistance in 
preparing the contents of the SIP, especially the Preservation Description Information 
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component. The SIP contains Content Information, but must also contain sufficient 
metadata to ensure that the Content Information can by maintained properly by the OAIS 
and be used by future Consumers [7]. The SIP is then transferred to the OAIS in one or 
more Data Submission Sessions. 

 

Fig. 1. OAIS Reference Model Information Package components (After Sawyer, 2002.) 

 

 
 
Upon receipt of the SIP, the OAIS creates an Archival Information Package (AIP) using 
the archives' ingest procedures. The OAIS defines the appropriate ingest procedures for 
creating the AIP according to the archives policies and guidelines. The OAIS may modify 
the form and content of the SIP: "An OAIS is not always required to retain the 
information submitted to it in precisely the same format as in the SIP. Indeed, preserving 
the original information exactly as submitted may not be desirable [8]". The intention 
here is to ensure the preservation of digital information, not to modify or tamper with the 
digital content. Once the SIP is transformed into the corresponding AIP and Package 
Descriptions (i.e., the information needed to make an AIP accessible from appropriate 
Access Aids) during the ingest process, the AIP is stored in an Archival Storage entity. 
Ingest processes, Package Descriptions, and Archival Storage hardware and software may 
vary significantly from one OAIS to another. 
 
The OAIS determines how to make the AIPs in its collection available to its Designated 
Community. To perform this function, OAIS defines a Dissemination Information 
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Package (DIP). The DIP is described in the Package Description, found using Access 
Aids provided by the OAIS. Access Aids are the tools provided to discover and obtain 
AIPs from the OAIS. Finding Aids, Collection Descriptions, Ordering Aids and other 
data discovery tools are types of Access Aids. When a user discovers the existence of 
archived materials through available Access Aids, the selected AIPs are assembled into a 
Dissemination Information Package (DIP) and transferred to the Consumer via a Data 
Dissemination Session. The structure and mechanism for delivering a DIP to Consumers 
depends on the way the archival organization creates its DIPs [9]. 
 
This introduction to the main components of an OAIS only scratches the surface of an 
extremely detailed and well-defined set of terms, objects, concepts, and procedures that 
an electronic archives needs to address to ensure the preservation of data and information 
for an indeterminate "Long Term". The next section of this paper describes the archival 
practices established by the US NODC and relates many of the functions, processes and 
information objects of the new NODC Archives Management System to the components 
of the OAIS Reference Model. 
 

3 NODC Archives Management System: A Case Study 
The US National Oceanographic Data Center (NODC) was created as an inter-
Departmental support organization administered by the US Navy in 1960 and transferred 
to the Environmental Science Services Administration (ESSA) in the mid-1960s. When 
the National Oceanic and Atmospheric Administration (NOAA) was created in 1970, the 
NODC became one of the three environmental data centers administered by the NOAA. 
The NODC receives oceanographic data from a diverse community of international 
oceanographic organizations, government organizations (federal, state, and local), and 
public and private universities and research institutions from around the world. 

 
The primary commonality among these organizations and the data they provide to the 
NODC archives is that the information is somehow related to the world's oceans, seas, 
and coastal areas. Data formats and structures, languages used, and the types of data 
collected can be extremely variable. Most oceanographic data collected in the past decade 
or two are provided to NODC in digital data files. As technology changes, new 
equipment for obtaining, storing and organizing measurements are invented. Data formats 
and structures change to accommodate new measurable values and techniques. The only 
constant throughout these technological changes is the need for accurate metadata about 
the instruments used (e.g., calibration and methodologies), data format structure and 
other documentation. 
 
By 1967, the NODC recognized the need to improve tracking of data that were sent to the 
NODC. A data set identification system was developed in which groups of data were 
assigned an NODC Accession Number to identify the information as a unit. An accession 
is loosely defined as 'a logical grouping of related data,’ which is usually interpreted as a 
group of data that are received together. Typical examples of the types of data in an 
accession include: in situ water column measurements (e.g., water temperature and 
salinity, nutrient concentrations such as dissolved nitrate and silicate, current speed and 
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direction), biological observations (e.g., abundance and taxonomic identification of 
plankton and fish species), or satellite observations of sea surface characteristics.  
 
As of December 31, 2003, there were 20,419 individual accessions in the NODC 
archives. New accessions are presently acquired at a rate of about 30 per month. During a 
recent month, more than 62 Gigabytes of data were downloaded by 1088 individual host 
computers connected to online services that access NODC information, holdings and 
products created from those holdings (NODC Information Systems and Management 
Division, unpublished report). 
 
The NODC recently developed the NODC Archives Management System (AMS) to 
bring the electronic and analog data, metadata, and administrative information files for 
oceanographic data collections into a more robust and flexible environment. The 
Accession Tracking Data Base (ATDB), the Archive File Management System (AFMS), 
the Ocean Archive System and the NODC Metadata Repository (NMR) are the primary 
components of the Archives Management System. The NODC Metadata Repository is a 
commercially-available database (using a proprietary structure and database developed 
by Blue Angel Technologies, Inc. and Oracle Corp.) that is optimized for managing data 
set descriptions in the Federal Geographic Data Committee (FGDC) Content Standard for 
Digital Geospatial Metadata (CSDGM) structure. While this component will soon 
provide descriptive metadata to assist with search and retrieval processes, the underlying 
software and database of this component of the AMS are beyond the scope of this paper. 
The emphasis in the next few sections is to describe the AMS components designed, 
developed and deployed within NODC on generic computer hardware using open source 
software for the operating system, database design and management, and preliminary 
data entry, search, and retrieval requirements.  
 
The NODC AMS identifies a series of information elements, procedures, and 
standardized practices that facilitate ingesting, describing, accessioning, storing, 
migrating, and accessing archived digital records and information. These functions are 
discussed below and are related to relevant OAIS RM concepts or constructs. Figure 2 
depicts the generic flow of an Information Package through the Archives Management 
System. 
 
3.1 Ingest Procedures 
The NODC frequently works with data Producers to prepare their information for 
archiving, i.e., to create a more meaningful Submission Information Package. At the 
NODC, the SIP is equivalent to a single accession as it is received from the Producer 
(internally, NODC currently refers to "originators data" rather than "a SIP"). During this 
interaction, the NODC encourages the data Producer to provide the most generic 
representation of their data possible and to provide as much descriptive documentation as 
possible. The reason for this is to obviate the need for NODC to undertake after-the-fact 
translation tasks to represent data that are in software and/or platform dependent data 
structures into less dependent structures. In many instances, these translations can be 
undertaken with little or no loss of meaning for the data. The NODC prefers to have the 
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data Producer make these translations whenever possible, rather than making such 
translations during the ingest process. 
 

Fig. 2. NODC AMS flow diagram for an Information Package. 

 

 
 
As shown in Figure 2, a Producer collects data and prepares it in some fashion for 
shipment to the NODC. Of course, the method of "shipment" and the medium used in this 
Data Submission Session has changed substantially over time from mailing analog 
records, computer punch cards, or magnetic tapes to FTP transfers, web site downloads, 
or sending CD-ROMs or DVDs. Ingest procedures now in place for each Data 
Submission Session are:  

• obtain and review the data/information files and/or other information objects in 
the SIP from the Producer; 

• create a new record in the NODC ATDB (described below), which establishes the 
'canonical structure' for the accessioned SIP in a preparation area; 

• copy/move digital data files to the appropriate directory of the Archives File 
Management System (described below); 

• request that the ATDB record be closed; 

• review of 'closed' accession record and SIP by 'Data Officer'; 

• transfer approved SIP to the archival storage area (creation of the AIP). 
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Once a SIP is ingested and accessioned and an AIP is created, the data in it may be 
processed into an NODC product (e.g., the NODC World Ocean Database, which 
contains more than 7 million temperature, salinity, and other parameter profiles) or 
delivered as a direct copy (DIP) using the NODC Ocean Archive System, an online 
discovery and retrieval service (OAIS Access Aid) described in greater detail below. 
 
3.2 Accession Tracking Data Base 
The Accession Tracking Data Base (ATDB) is a relational database that supports initial 
SIP  ingest procedures and administrative metadata management. The ATDB uses 
postgreSQL database management software on a generic server platform running the 
Linux operating system. Generically-designed browser-based user interfaces were 
developed using perl/CGI scripts to facilitate data entry and limited search/retrieval 
capabilities. Linux, postgreSQL, and perl are all freely available open source software 
designed to operate on a number of hardware platforms. One of the guiding principles for 
developing the ATDB and AMS was to determine if open source software tools were 
robust enough to support a mission critical information management system, rather than 
relying on commercial packages that require continuous license upkeep, maintenance and 
other expenses. The initial results suggest that the open source tools are more than 
adequate for the purposes of creating a workable file management system and a database 
to manage thousands of digital files. The ATDB represents several components of the 
Administration function in the OAIS RM [10]. 
 
A 'Brief Access Record' (BAR) is created for each new SIP using the main table in the 
ATDB. The BAR allows a new entry to be made in the ATDB based on a relatively few 
administrative and descriptive metadata elements. Administrative metadata elements 
keep track of an accession in the NODC File Management System and other pieces of 
internal information of importance to NODC but that may not necessarily be useful for 
Consumers. Administrative metadata, combined with descriptive metadata elements 
(discussed later) are roughly equivalent to the Package Description in the OAIS RM. 
Administrative metadata elements in the ATDB are: 

• accession number (unique identifier for an Archival Information Package, 
automatically generated by the database), 

• date received (date the SIP was received at the NODC), 

• keyer, editor (name of the NODC employee creating the ATDB entry and making 
the most recent change to the ATDB entry, selected from a controlled vocabulary) 

• keydate, editdate (system-assigned date-time stamp of ATDB entry creation and 
latest ATDB entry change), 

• status (information indicator that denotes the 'state' of the Archival Information 
Package, i.e., 'new', 'archived', 'revision'), 

• version (information indicator that denotes the most recent version of the AIP), 

• availability date (date after which this AIP can be made accessible to the public; 
default value is the same as the 'date received'), 

• requested action (information indicator to request action from the Data Officer 
function, i.e., 'close' ('assess this SIP and metadata for inclusion in the archives') 
or 'open' ('check the AIP out of the archive for revision, creating a new version of 
the AIP'), 
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• NODC contact (name of the NODC employee who is most familiar with the 
contents of this SIP or AIP. May be different than the 'keyer' or 'editor').  

 
The ATDB also requires the inclusion of a minimal amount of descriptive metadata about 
the SIP. Available descriptive information is passed from the ATDB via a program to the 
NODC Metadata Repository, creating a partially-complete FGDC CSDGM-structured 
description of this AIP. Descriptive metadata elements in the ATDB include a title, start 
and end dates, latitude and longitude bounding coordinates, and controlled-vocabulary 
descriptors for institution names, sea areas, parameter and observation types, instrument 
types, project names, and platform (ship) names. 
 
About 13 staff members are designated as keyers which means that they can create the 
initial BAR in the ATDB, although the majority of new BARs are created (at present) by 
3 or 4 people. Four senior, non-management staff members are designated Data Officers. 
The Data Officers are responsible for reviewing the work of the keyers, approving new 
accessions for inclusion in the archives, and developing related archival management 
policy recommendations for approval by NODC Management. 
 
3.3 NODC Archives File Management System 
Creating a new record in the ATDB causes a perl script to create a directory structure on 
a storage disk (represented in Figure 2 as "Temporary Archive" and referred to internally 
as the "ingest area" or "/ingest") in the canonical directory structure (Table 1). While still 
in the ingest area, it is possible to modify or add to the contents of a SIP. Once the 
contents of the SIP are finalized, a program is run that copies files from the ingest area to 
the "archive area" or "/archive". This Archival Storage is presently provided by a large 
capacity RAID device with limited write privileges, i.e., only the archivist function (in 
most cases, via a program) can write files to this system. The canonical structure of an 
NODC AIP is represented in Table 1.  
 

Table 1. NODC AMS File Management System canonical structure. Elements listed in 
italics are only part of the final archival version of the file structure. A “/” indicates the 

listed element is a directory. 
 

7-digit unique number/ NODC Accession number (e.g., 0000001) 
  0000001.01-version.md5 File containing checksum values for all files in this AIP. 

  1-version/ Directory identifying the most recent version of this 
AIP, beginning with 1-version.  

    NODC_ReadMe.txt Text file that describes this directory structure. 
    about/ Directory for storing information files created by 

NODC about this AIP. 

       journal.txt NODC-created file describing actions taken by NODC 
staff regarding this AIP. 

       other files… Optional other files created and/or maintained that are 
not part of the data in this AIP. 

    data/ Directory for storing the original data and translations 
of the original data in the AIP. 
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       0-data/ Directory for storing an exact copy of the original files 
in this AIP. 

          directories or files Copy of the original files obtained from the Producer. 
       1-data/ Directory for storing translated versions of the original 

files in this AIP. 

          directories or files Translated versions of the original files in this AIP in a 
directory structure that may resemble the original 
directory structure. 

 
The main sections of the canonical AIP structure are /about and /data. Any additional 
information about the SIP, such as emails between NODC and Producer or other NODC-
created information about the SIP, are placed in the /about subdirectory. The journal.txt 
file, which is initially created along with the directory structure, is used to document any 
steps taken by NODC personnel while performing ingest processes on the SIP. At 
present, NODC guidelines require that an exact copy of the original files in a SIP are 
copied to the /0-data directory, regardless of their original file structure. The /1-data 
directory is where NODC-created translations of the original SIP contents may be placed. 
The intention of this directory is to provide a place for non-proprietary representations of 
proprietary original data from the SIP. A typical example of the contents of /1-data might 
be the comma-separated ASCII representation of the text and values from a Microsoft 
Excel spreadsheet file. In an effort to minimize the probable lack of access to this file due 
to program changes or loss of vendor support for the program in the future, NODC 
attempts to translate files from proprietary structures to generic structures. 
 

3.4 Archiving Procedures 
The NODC continues to refine its archiving procedures for digital accessions. Archiving 
processes are undertaken by the employees designated as Data Officer. As noted above, 
Data Officer tasks (see Figure 2) include reviewing the work of the keyers and 
determining if an accession is ready to be moved from the /ingest area to the /archive 
area. There are currently only four criteria that the Data Officer uses to make this 
determination:  

• there is a fully-populated ATDB entry, 

• the journal.txt file has been updated, 

• the files in the /ingest directory are in the canonical form (Table 1), 

• a "reasonable attempt" has been made to translate data from proprietary formats to 
generic formats and translations are placed in /1-data. 

 
When a keyer determines that the ingest-AIP needs no further action, the ATDB element 
‘requested action’ is set to ‘Close’. This indicates to the Data Officer that the SIP is ready 
for review. If the four criteria listed above are met, the Data Officer approves the transfer 
of the SIP from the ingest area to the Working Archive Directories (Archival Storage), 
creating the 'working archive' copy of the AIP (Figure 2). The program that transfers files 
from /ingest to /archive calculates a checksum value for each file, which can be used for 
future validation of the contents of the AIP, and also runs additional virus-detection 
software to minimize the chance of archiving a virus with the AIP.  
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As noted in Figure 2, there are also "Deep Archive processes" that include the creation 
and validation of off-site copies of the AIP (one is maintained in Asheville, NC at the 
National Climatic Data Center and one will soon be maintained at the NODC National 
Coastal Data Development Center in Stennis Space Center, MS). These 'deep archive' 
copies are intended for use in disaster recovery situations or when the local 'working 
archive' copy is rendered temporarily unavailable due to equipment malfunction or other 
reasons. This backup process represents the Replication function described in the OAIS 
RM [11]. 
 
Figure 2 also shows a 'New Version processes' step. These processes, which require 
approval from the Data Officer, are used when a new version of an existing AIP is 
required. New versions are occasionally requested by a Producer, usually when an error 
is found in a previously submitted data set. In cases where a new version is requested, an 
exact copy of the existing AIP is 'checked out' of the archive area and placed back in the 
ingest area. Modifications are then made to the data files and/or metadata files by the 
editor who requested the new version. When all modifications have been made, the same 
approval process is followed by the Data Officer, with special attention paid to the 
documentation of what modifications were made, why they were made, and who made 
them. The entire AIP is then 'checked-in' to the Working Archive Directories as "/2-
version" (or the next available version number). In this fashion, NODC maintains a copy 
of each iteration of a specific data set. Circumstances for determining if an update SIP 
should be a new version of an existing AIP or should be a new AIP are decided on a case-
by-case basis by the Data Officer and Management. The current philosophy adopted by 
NODC management is that it is better to keep everything, including obsolete versions, 
than to be unable to provide back to the originator an exact copy of everything that was 
given to the Center. 
 

3.5 Metadata Management 
Descriptive metadata for new AIPs, in the form of FGDC CSDGM-compliant database 
records, are presently created and/or maintained in two places: the ATDB Brief Access 
Record and the NODC Metadata Repository (NMR). The BAR is discussed in detail 
above. The NMR is beyond the scope of this paper, but will be used to manage additional 
descriptive metadata for each AIP in the NODC collection. There is some overlap 
between the information in each of these databases. NODC maintains several authority 
tables (e.g., people, ship names, institutions, place names) in the ATDB to facilitate the 
creation of consistent descriptions of an AIP. Controlled vocabulary entries will only be 
updated through the ATDB. Details of how to propagate any updates efficiently into the 
NMR are still in development. Ultimately, NODC plans to maintain a comprehensive 
accession tracking and descriptive metadata database from which any number of 
formatted descriptive information (e.g., FGDC, ISO 19115, Dublin Core) could be 
exported. As mentioned above, descriptive metadata is part of the OAIS concept of 
Package Description. 
 
The OAIS RM requires a substantial level of semantic and syntactic metadata to be 
maintained in the Preservation Description Information (PDI) object of the AIP. At 
present, this level of metadata and the existence of a PDI object in an AIP depend on the 
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inclusion of such information in the SIP from the Producer. NODC is investigating how 
to create or refine the contents of this critical information element. 
 

3.6 Data Dissemination 
The NODC distributes two general types of Dissemination Information Package (DIP). 
One type of DIP is an exact copy of an AIP, with no additional processing beyond the 
possible translations described above. The other type of DIP distributed by the NODC is 
a Derived AIP, typically data from multiple AIPs processed by a product developer 
(usually within NODC, but occasionally by an external organization) to create a value-
added data set, referred to as an NODC Standard Product. In most cases, all of the data in 
an NODC Standard Product have been reformatted to a single data format and possibly 
had some type of quality control checks performed, such as marking values that 
erroneously appear in a land area or a measured value that is outside the range of possible 
values for a parameter. The obvious advantage of these products is that similar types of 
data that were originally in a variety of data structures may now be easily inter-compared 
or otherwise statistically manipulated. 
 
The OAIS RM categorizes Access Aids as a Finding Aid or an Ordering Aid. A Finding 
Aid allows a consumer to search for and discover DIPs that are of interest to the 
consumer. Ordering Aids are applications that help the Consumer to obtain DIPs of 
interest and include information costs and other handling circumstances that may be 
needed to transfer a copy of the DIP to the consumer. Standard products from the NODC 
(primarily Derived AIPs that are copied to CD-ROM or DVD and mass-replicated) can 
be discovered through a number of Finding Aid-like applications (e.g., NOAAServer, an 
FGDC Clearinghouse application), ordered from the NOAA National Data Centers 
Online Store [12], or discovered and downloaded using the NODC Ocean Archive 
System (OAS) [13]. 
 
The OAS is the current interface available directly from the NODC for searching, 
discovering, and retrieving copies of original data from the AMS. The OAS interface 
presents several of the ATDB descriptive metadata elements in a tabular form and allows 
a Consumer to select one or more descriptive elements to create a database query. Once 
the query has been processed, a list of accession numbers and descriptors for AIPs that 
match the query are presented, in addition to links to the full ATDB record and to the File 
Management System working archive directory. The Consumer can assess the relevance 
of the contents of the AIP and save all or part of the AIP to a local directory. 
 
A small reference team is available to assist a Consumer in deciding whether there is a 
Standard Product that is more suitable for their needs or to assist with finding appropriate 
AIPs. In general, the majority of requests for data and information are satisfied by a 
Standard Product. However, as AIPs become readily available online DIPs through the 
OAS or other Access Aids, the demand for additional assistance for Consumers in 
deciding about appropriate data is expected to increase. In general, the Consumers for 
data from the NODC are: ocean scientists of all types from all over the world and all 
levels of government (the Designated Community), non-scientist business persons (often 
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lawyers and insurance representatives) and the general public (usually for K-12 
educational purposes or recreational purposes). 
 

4 What is missing? 
The NODC Archives Management System described above is still in development, 
although the ATDB and File Management System parts of the AMS have been used 
operationally since about April 2002. The Ocean Archives System Finding Aid was 
released for public use in December 2003. Additional descriptive metadata elements were 
added to the ATDB in mid-2003 to accommodate metadata from a legacy database. But 
as noted above, the links between the ATDB and the NODC Metadata Repository (NMR) 
are not yet fully developed, although the same information used to load the ATDB with 
legacy information was used to populate the NMR for each AIP. Many issues related to 
maintaining the referential integrity of the information that resides in both the ATDB and 
the NMR are still being examined. 
 
The discussion above outlines how the main elements of the NODC Archives 
Management System map to many of the major components of the OAIS Reference 
Model. However, some important OAIS RM components are missing from the NODC 
AMS. In particular, two areas that need additional work are the development of a 
Submission Agreement and identifying Detailed Preservation Information for each AIP in 
the AMS. 
 
In most cases, no officially-communicated Submission Agreement spells out the terms, 
conditions, and other responsibilities of the NODC to act as the Long Term custodian of 
an Information Package. The NODC negotiates and maintains data and information 
exchange agreements with a number of US and foreign organizations as a routine part of 
its archives efforts, but many data sets are submitted to the NODC with little more than 
an email from the Producer or designated intermediary and varying levels of descriptive 
metadata. It is unclear if these sometimes informal cover letters are sufficient to serve as 
an OAIS Submission Agreement. The NODC participates in the development of the 
NOAA Comprehensive Large Array-data Stewardship System (CLASS), which is 
developing a Submission Agreement on behalf of the NOAA National Data Centers [14]. 
The draft version of the CLASS Submission Agreement is not yet available for public 
review, but currently is modeled using the FGDC Content Standard for Digital Geospatial 
Metadata (CSDGM) as a framework for defining a variety of custodial descriptive 
metadata. It is not yet clear if a separate formal Submission Agreement will be developed 
to authorize transferring data and information from the Producer to the NODC in addition 
to the current draft Submission Agreement. 
 
Perhaps the most difficult missing element in the NODC AMS is the availability of 
detailed Preservation Description Information. The OAIS RM defines this as "[t]he 
information which is necessary for adequate preservation of the Content Information and 
which can be categorized as Provenance, Reference, Fixity, and Context Information 
[15]". Some of this missing information will be provided for future accessions if 
something like the draft CLASS Data Submission form accompanies each Submission 
Information Package, but what about the historic data that already reside in the NODC 
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collections? Approximately 2700 of the 20,000+ AIPs archived at NODC have some type 
of information about their provenance and context in a Data Documentation Form (DDF), 
which was a standard form used to document data submitted to the NODC from the early 
1970s until the mid-1990s. The quantity and quality of the information in the DDFs 
varies significantly and is dependent on the effort made by the Producer to document the 
data; nearly all existing DDFs are analog documents stored either on-site at NODC or in 
an off-site storage facility. In OAIS terms, most historic AIPs at NODC have little or no 
level of Fixity Information (which "…authenticates that the Content Information has not 
been altered in an undocumented manner [16]"). Likewise, there are very few instances 
where Representation Information (i.e., "information that maps a Data Object into more 
meaningful concepts... [such as] the ASCII definition that describes how a sequence of 
bits is mapped into a symbol [17]") is present at all. The NODC is beginning to consider 
how to address these difficult information deficiencies as part of the planning to maintain 
its collections of data for the Long Term.  
 

5 Conclusions 
The Open Archival Information Systems Reference Model describes a very thorough 
approach to defining the processes, entities, and framework for maintaining digital 
information in a electronic archival environment without defining how to implement the 
framework. The NODC Archival Management System provides an example of how to 
implement a persistent digital archive for oceanographic data. Many of the processes and 
components correlate well with elements of the OAIS Reference Model. Major 
components, such as the Submission Information Package, Archival Information 
Package, Dissemination Information Package, and Archival Storage are clearly 
comparable between the OAIS RM and the NODC AMS. The main participants 
(Producer, Consumer, Management, and OAIS) are also all present in the NODC AMS, 
as are many of the primary functions (Ingest Process, Archive Process, Dissemination 
Process). On the other hand, the NODC AMS is frequently lacking some important OAIS 
RM components, such as a consistent Submission Agreement and a deeper level of 
Preservation Description Information. 
 
This paper establishes a relationship between the OAIS Reference Model and the archival 
management practices of the NOAA National Data Centers. It is important to document 
the commonalities in the NODC system and the OAIS RM as NOAA and the NOAA 
National Data Centers continue to develop and upgrade archival services for a broad and 
growing range of digital environmental data. While there are many commonalities 
between the NODC AMS and the OAIS RM, the NODC (and by extension, the NOAA 
National Data Centers) needs to be aware of the types of information that are not 
presently available or actively acquired for data that are sent to be archived. It is 
imperative that these environmental data records not become the "write once, read never" 
records bemoaned by Barkstrom [18] because they will provide the baseline scientific 
data for future environmental investigations and future generations.  
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Abstract: 
The Cern Advanced STORage (CASTOR) system is a hierarchical storage management 
system developed at CERN to meet the requirements for high energy physics 
applications. The existing disk cache management subsystem in CASTOR, the stager, 
was developed more than a decade ago and was intended for relatively moderate (large at 
the time) sized disk caches and request load. Due to internal limitations a single 
CASTOR stager instance will not be able to efficiently manage distributed disk cashes of 
several PetaBytes foreseen for the experiments at the Large Hadron Collider (LHC) 
which will be commissioned in 2007. The Mass Storage challenge comes not only from 
the sheer data volume and rates but also from the expected request load in terms of 
number of file opens per second. This paper presents the architecture design for a new 
CASTOR stager now being developed to address the LHC requirements and overcome 
the limitations with the current CASTOR stager. 
 
Efficient management of PetaByte disk caches made up of clusters of 100s of commodity 
file servers (e.g. linux PCs) resembles in many aspects the CPU cluster management, for 
which sophisticated batch scheduling systems have been available since more than a 
decade. Rather than reinventing scheduling and resource sharing algorithms and apply 
them to disk storage resources, the new CASTOR stager design aims to leverage some of 
the resource management concepts from existing CPU batch scheduling systems. This 
has led to a pluggable framework design, where the scheduling task itself has been 
externalized allowing the reuse of commercial or open source schedulers. 
 
The development of the new CASTOR stager also incorporates new strategies for data 
migration and recall between disk and tape media where the resource allocation takes 
place just-in-time for the data transfer. This allows for choosing the best disk and 
network resources based on current load. 
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1. Introduction 
The Cern Advanced STORage (CASTOR) system[1] is a scalable high throughput 
hierarchical storage system (HSM) developed at CERN. The system was first deployed 
for full production use in 2001 and is now managing about 13 million files for a total data 
volume of more than 1.5 PetaByte. The aggregate traffic between disk cache and tape 
archive usually exceeds 100 MB/s (~75% tape read) and there are of the order of 50,000 
– 100,000 tape mounts per week. CASTOR is a modular and fault-tolerant system 
designed for scalable distributed deployments on potentially unreliable commodity 
hardware. Like other HSM systems (see for instance [2], [3], [4], [5]) the client front-end 
for file access consists of a distributed disk cache with file servers managed by the 
CASTOR stager component, and an associated global logical name-space contained in an 
Oracle database (MySQL is also supported). The backend tape archive consists of a 
volume library (Oracle or MySQL database), tape drive queuing, tape mover and physical 
volume repository. The next section lists some of the salient features of today’s CASTOR 
system and the installation at CERN. Thereafter are listed some requirements that the 
CASTOR system has to meet well before the experiments at the Large Hadron Collider 
(LHC) start their data taking in 2007. 
 
The remaining sections (4 - 6) describe the new CASTOR stager (disk cache 
management component), which is being developed [6] to cope with the data handling 
requirements for LHC. It is in particular the expected request load (file opens) that 
requires some special handling. The design target is to be able to sustain peak rates of the 
order of 500 - 1000 file open requests per second for a PetaByte disk pool. The new 
developments have been inspired by the problems arising with management of massive 
installations of commodity storage hardware. It is today possible to build very large 
distributed disk cache systems using low cost Linux fileservers with EIDE disks. CERN 
has built up farms with several 100s of disk servers with of the order of 1TB disk space 
each. The farming of disk servers raises new problems for the disk cache management: 
request scheduling, resource sharing and partitioning, quality of service management, 
automated configuration and monitoring, and fault tolerance to unreliable hardware. 
Some of those problems have been addressed and solved by traditional batch systems for 
scheduling of CPU resources. With the new CASTOR stager developments described in 
this paper, the CASTOR team leverages the work already done for CPU scheduling and 
applies it for the disk cache resource management. This is achieved through pluggable 
framework design where the request scheduling is delegated to an external component. 
Initially LSF from Platform Inc [7] and Maui from Supercluster [8] will be supported. 
 
The new system is still under development and only exists as an advanced prototype. The 
final system is planned for 2Q04. 
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Figure 1: CASTOR components and their interactions 

2. The CASTOR architecture and capabilities 
The CASTOR software architecture is schematically depicted in Figure 1. The client 
application should normally use the Remote File IO (RFIO) library to interface to 
CASTOR. RFIO provides a POSIX compliant file IO and metadata interface, e.g. 
rfio_open(), rfio_read(), rfio_write(), rfio_lseek(), rfio_stat(), etc. For bulk operations on 
groups of files, a low-level stager API is provided, which allows for passing arrays of 
files to be processed. 
 
The Name server provides the CASTOR namespace, which appears as a normal UNIX 
filesystem directory hierarchy. The name space is rooted with “/castor” followed by a 
directory that specifies the domain, e.g. “/castor/cern.ch” or “/castor/cnaf.infn.it”. The 
next level in the name space hierarchy identifies the hostname (or alias) for a node with a 
running instance of the CASTOR name server. The convention is nodename = “cns” + 
“directory name”, e.g. “/castor/cern.ch/user” points to the CASTOR name server 
instance running on a node cnsuser.cern.ch. The naming of all directories below the third 
level hierarchy is entirely up to the user/administrator managing the sub-trees. 
 
The file attributes and metadata stored in the CASTOR name space include all normal 
POSIX “stat” attributes. The CASTOR name server assigns a unique 64 bit file identifier 
to all name space elements (files and directories). File class metadata associates tape 
migration and recall policies to all files. These policies include: 

• Number of tape drives to be used for the migration 
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• Number of copies required on different media. CASTOR supports multiple copies 
for precious data 

In order to avoid waste of tape media, CASTOR supports segmentation of large files over 
several tapes. The tape metadata stored in the CASTOR name space are currently: 

• The tape VID 
• Tape position: file sequence number and blockid (if position by blockid is 

supported by the tape device) 
• The size of the file segment 
• The data compression on tape 

There is also a ‘side’ attribute for (future) DVD or CD-RW support. The tape metadata 
will soon be extended to include the segment checksum. CASTOR does not manage the 
content of the files but a special “user metadata” field can be attached to the files in the 
CASTOR name space. The user metadata is a character string that the client can use for 
associating application specific metadata to the files. 
 
The RFIO client library interfaces to three CASTOR components: the name server 
providing the CASTOR namespace described in previous paragraph; the CASTOR 
stager, which manages the disk cache for space allocations, garbage collection and 
recall/migration of tape files; the RFIO server (rfiod), which is the CASTOR disk mover 
and implements a POSIX IO compliant interface for the user application file access. 
 
All tape access is managed by the CASTOR stager. The client does not normally know 
about the tape location of the files being accessed. The stager therefore interfaces with: 

• The CASTOR Volume Manager (VMGR) to know the status of tapes and select a 
tape for migration if the client created a new file or updated an existing one 

• The CASTOR Volume and Drive Queue Manager (VDQM), which provides a 
FIFO queue for accessing the tape drives. Requests for already mounted volumes 
are given priority in order to reduce the number of physical tape mounts 

• The CASTOR tape mover, Remote Tape COPY (RTCOPY), which is a 
multithreaded application with large memory buffers, for performing the copy 
between tape and disk 

• The RFIO server (rfiod) for managing the disk pools 
 
The CASTOR software is an evolution of an older system, SHIFT, which was CERN’s 
disk and tape management system for almost a decade until it was replaced by CASTOR 
in 2001. SHIFT was awarded ‘21st Century Achievement Award by Computerworld in 
2001’ [9]. 
 
The CASTOR software has been compiled and tested on a large variety of hardware: 
Linux, Solaris, AIX, HP-UX, Digital UNIX, IRIX and Windows (NT and W2K). The 
CASTOR tape software supports DLT/SDLT, LTO, IBM 3590, STK 9840, STK9940A/B 
tape drives and ADIC Scalar, IBM 3494, IBM 3584, Odetics, Sony DMS24, STK 
Powderhorn tape libraries as well as all generic SCSI driver compatible robotics. 
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Figure 2: The number of requests per day normalized to TB of disk pool space. The 
plot shows one month of activity for 5 different stagers. ALICE, ATLAS, CMS and 
LHCb are the four LHC experiments whereas COMPASS is a running heavy ion 
experiment. 

The CASTOR RFIO client API provides remote file access through both a POSIX I/O 
compliant interface and a data streaming interface. The former is usually used by random 
access applications whereas the latter is used by the tape mover and disk-to-disk copy. At 
the server side the data streaming mode is implemented with multiple threads overlaying 
disk and network I/O. When using the RFIO streaming mode the data transfer 
performance is normally only limited by hardware (see [10] for performance 
measurements). Parallel stream transfers are not supported since this is not required by 
High Energy Physics applications. An exception is the CASTOR GridFTP interface, 
which does support parallel stream transfers in accordance with the GridFTP v1.0 
protocol specification. 

3. Requirements for the LHC 
CASTOR is designed to cope with the data volume and rates expected from the LHC 
experiments. This is frequently tested in so called ‘data challenges’ that the CERN IT 
department runs together with the experiments. In late 2002, the ALICE experiment ran a 
data challenge with a sustained rate of 280 MB/s to tape during a week [11]. The CERN 
IT department has also shown that the CASTOR tape archive can sustain 1 GB/s during a 
day [12]. 
 
In addition to the high data volume and rates generated by the LHC experiments, it is 
expected that the physics analysis of the data collected by LHC experiments will generate 
a very high file access request load. The four LHC experiments are large scientific 
collaborations of thousands of physicists. The detailed requirements for the LHC physics 
analysis phase are unknown but from experience with previous experiments it can be 
expected that 

349



• The data access is random 
• Only a portion of the data within a file is accessed 
• The set of files required by an analysis application is not necessarily known 
• A subset of the files are hit by many clients concurrently (hotspots) 

The files must therefore be disk resident and since a substantial part of the physics 
analysis will take place at CERN it will result in a high request load on the CASTOR 
stager. Since the detailed requirements are unknown it is difficult to give an exact 
estimate for the expected request load on CASTOR. In order to obtain a design target the 
activity of five running instances of the current CASTOR stager was observed during a 
month, see Figure 2. The rates are normalized to the size of the disk pools in TB. The 
figure shows a peak rate of about 25,000 requests/day (0.3 requests/second) per TB disk. 
The average was about 10 times lower: 3,400 requests/day per TB disk. The associated 
data rate to/from the disk cache depends on the file sizes and the amount of data accessed 
for each file. The data volume statistics from the period shown in Figure 2 is no longer 
available but looking at a more recent period it was found that for the ATLAS stager the 
average data transfer per request is of the order 20MB (400GB for a day with 20,000 
requests) whereas for LHCb it was only 3MB (50GB for a day with 17,000 requests). 
 
Assuming that the number of file access requests scales linearly with the size of the disk 
cache, the peak request rate for a PetaByte disk cache would be of the order 300 
requests/second. The objective for the new CASTOR stager is therefore to be able to 
handle peak rates of 500 – 1000 requests per second. Under such load it is essential that 
the new system is capable of request throttling, which is not the case for the current 
CASTOR stager. It is also known that the current CASTOR stager catalogue will not 
scale to manage more than ~100,000 files in the disk cache. Those shortcomings have 
already today led to a deployment of many CASTOR stager instances, each with its 
dedicated moderate size (5-10TB) disk cache. The disadvantages are manifold but most 
important are: 

• Each stager instance has its dedicated disk cache and this easily leads to 
suboptimal use of the resources where one instance runs at 100% and lacks 
resources while another instance may be idle. 

• The configuration management becomes complex since each stager instance has 
its own configuration and the clients must know which stager to use. 

4. New CASTOR stager architecture 
The new CASTOR stager, which is currently being developed at CERN, is specifically 
designed to cope with the requirements listed in the previous section. This section briefly 
describes some of the salient features of the new architecture. 
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Figure 3: Overview of the new CASTOR stager architecture 

4.1. Overview 
Figure 3 shows a schematic view of the new architecture. The client application uses the 
RFIO API or the lower level stager API (for multi-file requests) to submit the file access 
request. Although it is not shown in the Figure 3, the CASTOR name server is called for 
all operations on the CASTOR name space as was shown in Figure 1. The request 
handler, master stager and migration/recall components communicate through a database 
containing all file access requests and the file residency on disk (catalogue). To avoid too 
frequent polling, unreliable notification is used between the modules when the database is 
being updated. The role of the request handler is to insulate the rest of the system from 
high requests bursts. The master stager is the central component that processes the file 
access requests and delegates the request scheduling decision to an external module. The 
first version of the new CASTOR stager will have resource management interfaces to 
LSF [7] and Maui [8]. The migration/recall components retrieve the tape related 
information and contacts the CASTOR tape archive (see Figure 1) to submit the tape 
mount requests. 
 
Along with the new stager developments, it was decided to improve the security in 
CASTOR. However, for CERN physics applications, confidentiality is not a main 
requirement, and encrypting all the data during transfer would add significant load on the 
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CASTOR servers. Therefore, strong authentication of users in RFIO, stager and the 
CASTOR name server will be implemented using standard security protocols: Kerberos-
5, Grid Security Infrastructure, and Kerberos-4 for compatibility with the current CERN 
infrastructure. Furthermore the architecture of the new stager and its interface with RFIO 
will allow only authorized clients (file access request has been scheduled to run) to access 
the files on the disk servers managed by the stager. 
 
Below follows a more detailed description of the components and concepts used in the 
design of the new CASTOR stager architecture. 

4.2. Database centric architecture 
In the new CASTOR stager, a relational database is used to store the requests and their 
history, to ensure their persistency. The stager code is interfaced with Oracle and 
MySQL, but the structure allows plugging-in other Relational Database Servers if 
necessary. Furthermore, the database is also used for the communication between the 
different components in the stager (request handler, stager, migration/recall…) 
This database centric architecture has many advantages over the architecture of the 
current stager. 
 
From a developer’s point of view: 

• The data locking and concurrency when accessing the data are handled by the 
RDBMS: This makes the development/debugging of the code much easier. 

• The database API is used to enter or read requests. The CASTOR application does 
not have to know whether the database is local or remote, the database API takes 
care of that (e.g. the Oracle API uses shared memory if the database is local or 
SQLNet otherwise). 

 
From the CASTOR system’s administrator point of view: 

• The database being the central component in the architecture, the coupling 
between the different components is very low.  

• This, as well as the persistence of the requests, and the proper use of status codes 
to identify their state, allows stopping and restarting the system, or specific 
components at any time. The administration is made easier. 

 
For the CASTOR user, the overall scalability of the system is greatly improved as: 

• RDBMS can cope with large amount of data. If the database tables are properly 
designed, the system should not have huge performance penalty when dealing 
with a large number of requests. 

• The stager software components are stateless, which allows running several 
instances on different machines without problems. The real limit to the scalability 
is the database server itself. 

• The database software is prepared for high loads, and there are some cluster 
solutions that can help coping with such problems. 
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Figure 4: Request handler architecture 

There are however some drawbacks to this architecture: 
• The latency for each call is higher than with the current architecture, as the stager 

components have to access the database. 
• The database server is a central point of failure and has to cope with a very high 

load. However, database technology is widely deployed and it is possible to get 
database clusters to mitigate that risk. 

 
Furthermore, just using the database for communication between the components would 
force them to frequently poll the database, which creates unnecessary load, and possibly 
increase the latency of the calls to the stager. Therefore, in the current stager prototype, a 
notification mechanism using UDP messages has been introduced. This mechanism is 
very lightweight and does not create a big coupling between the different components as 
UDP is connectionless.  

4.3. Request handler 
The request handler handles all requests in CASTOR, from reception to archiving. The 
main purpose of the Request Handler is to shield the request scheduling from the possible 
request bursts. The request handler is also responsible for the decoding of the requests 
and storing them in the database. At all different stages in the request processing the 
requests are stored and updated in the database. The Request Handler architecture is 
sketched in Figure 4. 
 
 
 

Network interface 

Request Decoding 

Request Management 

Archiving 
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Figure 5: Request content 

The Network Interface is responsible for handling new requests and queries coming 
from the clients. This is the component realizing the isolation against request bursts. It is 
designed to sustain high rates (up to 1000 requests per second). Therefore the only thing 
it does is to store the raw request as a binary object into a database for further processing 
by the request decoder. There are only two transactions on this table per request: one 
insert and one retrieve + delete. To guarantee the best insertion rate this database instance 
may be deployed separately from the rest of the request repository. 
 
The Request Decoding takes place asynchronously. The decoded requests are stored into 
a database where they can be easily used and queried by the rest of the system, especially 
by the master stager scheduling component. 
 
When a request is selected by the scheduling component for processing, it is moved to the 
Request Management components, which associate data to each request describing its 
status (flags), its clients (authenticated and authorized) and the tapes possibly required 
(see Figure 5). 
 
At last, when the processing of a request is over, it is archived by the Archiving 
component. 
 
The request handler manages two interfaces: the network interface that is used by 
external clients, and the interface to the Request Manager for internal communication 
with the other components of CASTOR: 

Flag Request IClient 

IAuthentication 

IAuthorization 

File 

Copy 

Segment 

TapeInfo 

1..n 

1..n 

1..n 

1..n 

1..m 

1..n 
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• The network interface component allows clients to send requests to CASTOR. 
The API used is very much inspired by the SRM standard [13] so it will not be 
described in any detail here. Command line scripts are also provided. 

• The internal interface has two parts: 
o The first part allows the stager component to handle requests and to update 

their metadata 
o The second part is used by the migration/recall component to get the list of 

tapes and segments of file to be migrated and to update the tape status. 

4.4. Master stager and externalized scheduling plug-in interface 
The master stager is central in the new architecture. It has two main functions: 

• Manage all resident files and space allocations in the disk cache 
• Schedule and control all client access to the disk cache 

 
The master stager maintains a catalogue with up-to-date information of all resident files 
and space allocations in the disk cache. The catalogue maintains a mapping between 
CASTOR files (paths in the CASTOR name space) and their physical location in the disk 
cache. The mapping may be one-to-many since, for load-balancing purpose there may be 
several physical replicas of the same CASTOR file. An important difference to the 
current CASTOR stager is that the catalogue is implemented with a relational database. 
Oracle and MySQL are supported but other RDBMS systems can easily be interfaced. 
This assures that the system will scale to large disk caches with millions of files. 
When the master stager gets notifications from the request handler that there are new 
requests to process, it uses the request handler internal interfaces to retrieve the requests 
from the database. The basic processing flows in the master stager are depicted in Figure 
6: 

• If the request is for reading or updating an existing CASTOR file, the master 
stager checks if the requested file is already cached somewhere in the disk cache. 
In case the file is already cached, the request is submitted to the external 
scheduler and queued for access to the file in the disk cache. 

• If the request is for creating a new file, the entry is created in the CASTOR name 
space and the request is submitted to the external scheduler like in the previous 
case. 

• If the request is for reading or updating an existing CASTOR file, which is not 
already cached, the master stager marks the file for recall from tape and notifies 
the recaller. Once the file has been recalled to disk the request is submitted to the 
external scheduler like before. 

 
The scheduling of the access depends on the load (CPU, memory, I/O) on the file server 
and disk that holds the file. If the load is too high but another file server is ready to serve 
the request, an internal disk-to-disk copy may take place replicating the file to the 
selected disk server.  
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Figure 6: Master stager basic flows 

 
Request throttling and load-balancing are already established concepts in modern disk 
cache management [2] and distributed file systems [14], [15]. The novelty of the new 
CASTOR stager architecture is the delegation of the request scheduling to an external 
module, which allows for leveraging existing and well-tested scheduling systems. In the 
simplest case, the external scheduling module could be a FIFO queue. However an 
important advantage of using sophisticated scheduling systems like [7], [8], [16]  is that 
they also provide established procedures for applying policies for quality of service and 
resource sharing. Interfacing the disk resource management with CPU batch scheduling 
systems prepares the ground for eventually marrying the CPU and storage resource 
management.  
 
Because of the close resemblance between farms of CPU servers and farms of 
commodity file servers it is possible to re-use the CPU batch scheduling systems almost 
out-of-the-box (see Section 5). The only adaptation required was to accommodate for the 
fact that a disk cache access request not only targets a file server (node) but also the file 
system (disk) holding the file or space allocation. While the local pool (or worker 
directory) file-system is part of normal CPU scheduling attributes, it is normally assumed 
that there is only one file-system per node. A file server may have several file systems 
mounted. The CASTOR development team has established excellent collaborations with 
LSF [7] and Maui [8] developers. Both groups were interested in the problem of disk 
storage access scheduling and extending their systems to support file-system selection in 
the scheduling and resource allocation phases. 
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It should be noted that the similarity between CPU and file server scheduling is partly 
due to the particular NAS based disk cache architecture with many (100s) file servers 
holding only a few TB disk space each. For SAN based architectures some more 
adaptation of the CPU schedulers is probably needed. 

4.5. Recaller and migrator components 
The recaller and migrator components control the file movements between the CASTOR 
disk cache and the tape archive. Since most mass storage systems contains similar 
components, including the current CASTOR stager, only the most important features of 
the new CASTOR recaller and migrator components will be listed here. 
 
Both the recaller and migrator read the request repository to find out what files needs to 
be recalled or migrated. While the process of copying files to and from tape is in 
principle trivial, the task is complicated by the significant delays introduced by tape drive 
contention and the tape mounting. Tape drive contention comes from the fact that there 
are usually much more tape volumes than drives and the access must be queued. Tape 
mounting latency comes from fetching the volume and loading it onto the drive. 
 
Because of the inherent delays introduced by the tape drive contention and tape 
mounting, CASTOR recaller and migrator do not select the target disk resources that will 
receive or deliver the data until the tape is ready and positioned. This “deferred 
allocation” of the disk resources has already been used with good experience in the 
recaller component of the current CASTOR stager: the target file server and disk that will 
receive the file is selected in the moment the tape mover is ready to deliver it. In this way 
space reservations and traffic shaping, which are cumbersome to implement and often 
lead to suboptimal resource utilization, can be avoided. The selection is currently based 
on available disk space and I/O load but other metrics/policies can easily be added. 

5. First prototype 
An evaluation prototype of the new CASTOR stager has been built in order to test out 
some of the central concepts in the new architecture. The prototype includes: 

• A request handler storing all requests in a request repository (Oracle and MySQL 
supported). 

• A master stager reading requests from the request repository and delegates the 
request scheduling and submission to a LSF instance. 

• A LSF scheduler plug-in for selecting target file-system and pass that information 
to the job when it starts on the file server. 

• A load monitoring running on the managed file servers collecting disk load data 
• A LSF job-starter that starts an rfiod (disk mover) instance for each request 

scheduled to a file server. The RFIO API client is notified about the rfiod address 
(host and port) and a connection is established for the data transfer. 

The prototype was based on standard LSF 5.1 installation without any modifications. 
This was possible using the plug-in interface provided by the LSF scheduler. A CASTOR 
plug-in is called for the different phases in the LSF scheduling to perform the matching, 
sorting and allocation of the file systems based on load monitoring information. While 
this was sufficient for the prototype, it was recognized that some extra features in the LSF 
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interfaces would make the processing more efficient. The LSF development team was 
interested in providing those features and a fruitful collaboration has been established. 
 
The prototype is also prepared for interfacing the Maui scheduler and the Maui 
developers have been very helpful in providing the necessary interfaces between Maui 
and the CASTOR file system selection component. 
 
While the prototype was aimed to prove the functionality rather than performance, it 
should be mentioned that already for this simple deployment using old hardware and 
without any particular database tuning, the request handling was capable of storing and 
simultaneously retrieve 

• 40 requests/second using Oracle (a dual CPU 1GHz i386 Linux PC with 1GB 
memory) 

• 125 request/second using MySQL (single CPU 2.4GHz i386 Linux PC with 
128MB memory) 

6. Development status 
The developments of the new CASTOR stager started in mid-2003 and a production 
ready version is planned for 2Q04. Before that a second prototype including all new 
components and the full database schema is planned for March 2004. 

7. Conclusions and outlook 
 The CASTOR hierarchical storage management system is in production use at CERN 
since 2001. While the system is expected to scale well to manage the data volumes and 
rates required for the experiments at the Large Hadron Collider (LHC) in 2007, it has 
been become clear that the disk cache management will not cope with the expected 
request load (file opens per second). The development of a new CASTOR stager (disk 
cache management system) was therefore launched last year. The important features of 
the new system design are: 

• The request processing is shielded from high peak rates by a front-end request 
handler, which is designed to cope with 500 – 1000 requests per second. 

• The scheduling of the access to the disk cache resources is delegated to an 
external scheduling system. This allows leveraging work and experience from 
CPU batch scheduling. The first version of the new CASTOR stager will support 
the LSF and Maui schedulers. 

• The software architecture is database centric. 
A first prototype of the new system was successfully built in order to prove the new 
design concepts. The prototype interfaced the LSF 5.1 scheduler. 
 
A production ready version of the new CASTOR stager is planned for 2Q04. 
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Abstract
The Global Unified Parallel File System (GUPFS) project is a five -year project to 
provide a scalable, high -performance, high -bandwidth, shared file system for the 
National Energy Research Scientific Computing Center (NERS C). This paper presents 
the GUPFS testbed configuration, our benchmarking methodology, and some preliminary 
results.

1 Introduction
The Global Unified Parallel File System (GUPFS) project is a multiple -phase, five year 
project to provide a scalable, high -performance, high-bandwidth, shared file system for 
the National Energy Research Scientific Computing Center (NERSC) [1]. The primary 
purpose of the GUPFS project is to make it easier to conduct advanced scientific research 
using the NERSC systems. This is t o be accomplished through the use of a shared file 
system providing a unified file namespace, operating on consolidated shared storage that 
is directly accessed by all the NERSC production computational and support systems.

In order to successfully deploy  a scalable high -performance shared file system with 
consolidated disk storage, three major emerging technologies must be brought together: 
shared/cluster file systems, cost -effective, high performance Storage Area Networks 
(SAN) fabrics, and high performa nce storage devices. Although they are evolving 
rapidly, these emerging technologies are not targeted towards the needs of high 
performance scientific computing. The GUPFS project is intended to evaluate these 
emerging technologies to determine the best so lutions for a center -wide shared file 
system, and to encourage the development of these technologies in directions needed for 
HPC at NERSC.

The GUPFS project is expected to span five years. During the first three years of the 
project, NERSC intends to tes t, evaluate, and steer the development of the technologies 
necessary for the successful deployment of a center -wide shared file system. Provided 
that an assessment of the technologies is favorable at the end of the first three years, the 

* This work was supported by the Director, Office of Science, Office of Advanced Scientific Computer Research, 
Mathematical, Information, and Computational Sciences Division, of the U.S. Department of Energy under Contract 
No. DE-AC03-76SF00098.
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last two years of the GUPFS project will focus on a staged deployment, leading to full 
production at the beginning of FY2006.

To this end, during the past year the GUPFS project focused on identifying, testing, and 
evaluating existing and emerging shared and cluster file s ystem, SAN fabric, and storage 
technologies. During this time, the GUPFS project was also active in identifying NERSC 
user I/O requirements, methods, and mechanisms, and developing appropriate 
benchmarking methodologies and benchmark codes for a parallel environment.

This paper presents the GUPFS testbed configuration, our benchmarking methodology, 
and some preliminary results.

2 GUPFS Testbed Configuration
The GUPFS testbed was constructed from commodity components as a small -scale
system mimicking a scien tific parallel computational cluster. Its purpose was to assess 
the suitability of shared -disk cluster file systems with SAN attached storage to the 
scientific computational cluster environment. 

This testbed system presented a microcosm of a parallel sci entific cluster —dedicated
computational nodes, special -function service nodes, and a high -speed interconnect for 
message passing. It consisted of five computational nodes and one 
management/interactive node, and utilized an internal jumbo frame Gigabit Eth ernet as 
the high -speed message passing interconnect. An internal 10/100 Mb/s Fast Ethernet 
LAN was used for system management and NFS distribution of the user home file 
systems. The configuration of the testbed is illustrated in following diagram.

In designing a testbed for the GUPFS project, a number of factors were considered. The 
testbed was designed to support the evaluation of three technology areas: 
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� Shared/cluster file systems
� SAN fabrics 
� Storage devices

These three technology areas are key to  the successful deployment of a center -wide
shared file system utilizing consolidated storage resources. 

The testbed is configured as a Linux parallel scientific cluster, with a management node, 
a core set of 32 dedicated compute nodes and a set of six s pecial-purpose nodes. Each 
compute node is a dual Pentium IV system with six PCI -X slots. The PCI -X slots allow 
us to test newer high performance interfaces such as 4x Infiniband HCA. All computer 
nodes are equipped with a 2Gb/s Fibre Channel HBA and a 1Gb /s Ethernet interface. 
Various sets of compute nodes are equipped with different groups of interfaces being 
evaluated such as Infiniband and Myrinet interfaces.

3 GUPFS Benchmarking Approach
File systems, and parallel file systems in particular, are extremely complicated and should 
be evaluated within the context of their intended use. In the commercial world, a file 
system may be evaluated by how it performs on a single application or a small number of 
critical applications. For example, a web serving conte nt provider may not be interested 
in parallel write performance since the primary role of the file system is to provide read -
only access to data across a large number of servers without having to replicate the data 
to multiple farms.

By contrast, the NERS C HPC environment must support a large number of user -written
applications with varying I/O and metadata performance requirements. Further, 
applications running today may not resemble the applications that will be running two 
years from now. Given this div ersity, the GUPFS project is taking a more general, multi -
pathed approach to the evaluation of parallel file systems.

Initially, the GUPFS project has performed parallel I/O scalability and metadata 
performance studies. Later, testing includes reliability  and stress -test studies, and finally 
the project will evaluate the performance with respect to specific I/O applications that 
emulate real NERSC user codes.

3.1 Parallel I/O Performance Studies
Evaluating the performance of a file system, and a parallel file  system in particular, can 
only be done within the context of the underlying system and storage environment. If the 
underlying storage network or device can only perform at a rate of 30 MB/sec then we 
cannot expect sustained I/O performance through a file system to exceed this. In addition, 
for the case of a parallel file system, we need to understand the scalability of the 
underlying storage network before passing judgment on the file systems’ ability to scale 
to a large number of clients. To aid in this p ortion of the study, we have developed a 
parallel I/O benchmark named ‘MPTIO’ which can perform a variety of I/O operations 
on files or devices in a flexible manner. MPTIO is an MPI program in which each 
process spawns multiple threads to perform I/O on th e underlying file or device. MPI is 
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used to synchronize the I/O activity and to collect the per -process results for reporting. It 
does not use the MPI-I/O library. When acting through a file system, MPTIO can have all 
threads perform I/O to a single global  file, or all the threads of a process can perform I/O 
to a single file per -process, or all the threads can perform I/O to distinct per -thread files. 
In addition, I/O can be performed directly to a block device or Linux RAW device to help 
characterize the underlying storage devices and storage area network. Further, each 
thread can perform I/O on distinct, non -overlapping regions of the file or device, or 
multiple threads can perform overlapping I/O. The code can run five different I/O tests, 
including sequential read and write, random I/O and read -modify-write tests. Aggregate 
and per -process results are reported. For a complete description of this code, see the 
Benchmark Code Descriptions section in [2].

We can baseline the performance of the storage netw ork and a device using raw device 
I/O as follows:

� First we measure the I/O rates from a single node to or from the device, by 
varying the number of I/O threads to the point that the I/O rate saturates.

� Second, we scale up the number of processes (each on a separate node) and also 
vary the number of I/O threads per process. 

� Third, if multiple paths exist through the network to the controller, we can use 
MPTIO to perform I/O through all paths. 

If the raw device I/O rates do not improve past a single node,  then the performance 
bottleneck is in some portion of the network or on the storage device. If they do improve, 
the first test gives us a good estimation of the peak sustainable raw device I/O rate onto a 
single node. In this case, as the number of nodes increases, eventually the aggregate raw 
device I/O rate will again saturate. This bottleneck is either in the network or on the 
storage controller. 

Once a profile of the storage device and network using raw device I/O is complete, a file 
system can be built over the device. We can then perform I/O and scalability studies over 
the file system. Since most file systems cache data in host memory, large I/O requests 
have to be used to minimize the effects of caching. For example, if we observe better 
performance through the file system than to the RAW device, we can conclude it is the 
effect of data caching on the node. In addition, one can compare the performance 
difference between multiple processes writing to the same file versus each writing to 
different files. If the performance difference is substantial, it will likely be due to write -
lock contention between the processes. This might be alleviated if the file system 
supports byte -range locking so that each process can write its own section without 
obtaining the single (global) file lock. If the file system supports DIRECT I/O, then one 
can compare I/O performance through the file system with what was measured to the 
RAW device. The difference will indicate the amount of software and organizational 
overhead associated with the file system. For example, file block allocation will probably 
be distributed across the device resulting in multiple non -contiguous I/O requests to the 
device. Such I/O performance can degrade as the file system fills and block allocati on is 
more fragmented. File system build options and mount options may also play a 
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substantial role in the performance. Additional tuning may need to be examined to see 
how they may affect the I/O performance.

3.2 Metadata Performance Studies
In a typical (lo cal) file system, the metadata is often heavily cached in the system 
memory and updated in an order such that, in the event of a system crash, the file system 
would be re -constructible from the on -disk image. Modern file systems maintain 
transaction logs, or journals, to keep track of which updates have been committed to 
stable storage and which have not. Each of the data structures generally contain one or 
more locks such that operating system actors wishing to modify the structure do so in an 
atomic manner, by first acquiring the lock, modifying the structure and then releasing the 
lock. Some file system operations require modifying many of the structures and thus the 
actors must acquire multiple locks to complete the operation. In a parallel file system 
multiple clients, running on different machines under different instances of an operating 
system will want to modify these data structures (to perform operations) in an 
unpredictable order. In these cases, where is the metadata is maintained and who control s
it can have a dramatic effect on the performance of a file system operation. 

There are currently two main approaches to managing metadata in parallel file systems: 
symmetric (distributed) and asymmetric. In a purely symmetric file system, all the file 
system clients hold and share metadata. Clients wanting to perform an operation must 
request locks from the clients holding them via some from of distributed lock manager. In 
an asymmetric file system, a central (dedicated) metadata server maintains all th e
information. The clients request updates or read and write access to files. Clearly, this 
latter case is easier to manage but establishes a single point of failure and may create a 
performance bottleneck as the number of clients increases. Note that in both cases, once a 
client is granted read or write access to a file, it accesses the file data directly through the 
SAN.

One aspect of evaluating a file system is how well it performs various metadata 
operations required for concurrent file operations by l arge number of clients in a parallel 
environment. Clearly, where and how the metadata is maintained will have a substantial 
impact on the performance of various file system operations. Clients have to send 
messages to other nodes in the cluster requesting locks, or asking for operations to be 
performed. The latency of the interconnection network and the software overhead of 
processing the communication stack will be a major portion of these costs. Apart from 
the issues of parallel file systems, a portion of  the metadata performance will have to do 
with how the data structures are organized internally. For example, some file systems will 
maintain a directory structure as a linear linked list whereas others will use more 
sophisticated schemes, such as hash tab les and balanced trees. Linear lists are easy to 
implement but access and update performance degrades rather seriously as the number of 
directory entries increase. The other schemes provide near -constant or log -time access 
and update rates and perform well  as the directory grows. This, of course, is at the 
expense of a more complicated implementation. Another example is how the file system 
maintains information about which underlying blocks are free or in use. Some systems 
use a bitmap whereby the value of the bit indicates the availability of the block. Other 
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systems use extent -based schemes whereby a small record can represent the availability 
of a large region of contiguous blocks. 

In our study, we measured how the various parallel file systems perform with respect to 
certain metadata intensive operations. To this end, we have developed a file system 
metadata benchmark code called ‘METABENCH’. This is a parallel application that uses 
MPI to coordinate processes across multiple file system clients. The pr ocesses perform a 
series of metadata operations, such as file creation, file stating and file utime and append 
operations. Details on the current state of METABENCH can be found in the 
Benchmarking Code Descriptions section in [2]. 

3.3 User Applications Emulation
Although micro benchmarks such as MPTIO and METABENCH can provide a wealth of 
information about how a file system behaves under controlled conditions, the true test of 
a file system is how it performs in a real user environment. The NERSC user commun ity
is large, with a diverse collection of codes that evolve over time. In addition, the codes 
are complex and may not easily be ported to our test system, or even scale down to that 
size. Further, the I/O and file operation portion of the code may only co nsume a small 
portion of the run-time so attempting to run the actual application on the testbed would be 
inefficient. In order to address these issues, we plan to develop a small collection of I/O 
applications that emulate the I/O and file management beha vior of real NERSC user 
applications. This will be a time -consuming task and will only be successful with the aid 
of the user community. We have begun an informal survey of some of the larger NERSC 
projects to understand their I/O requirements. As a part o f this, we will select a few 
applications and solicit the users to help us create an I/O benchmark that emulates their 
code.

4 Preliminary Performance Results
During the past year, we have evaluated a number of products and technologies that we 
believe are key technologies to the GUPFS Project. We will present testing results in this 
section for some of the following products and technologies evaluated:

� File Systems: Sistina 5.1 & 5.2 Beta; ADIC StorNext (CVFS) File System 2.0; 
Lustre 0.6 (1.0 Beta 1) and 1.0; and GPFS 1.3 for Linux

� Fabric Technologies
o Fibre Channel Switches: Brocade SilkWorm and Qlogic SANbox2 -16 and 

SANbox2-64
o ISCSI[3]: Cisco SN 5428, Intel iSCSI HBA, iSCSI over IB
o Infiniband: InfiniCon and Topspin (IB to FC and GigE) 
o Inter-connect: Myrinnet, GigE

� Fibre Channel Storage Devices 
o 1Gb/s FC: Dot Hill, Silicon Gear, Chaparral 
o 2Gb/s FC: Yotta Yotta NetStorager[8], EMC CX 600, 3PARdata
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4.1 Storage Performance and Scalability
Storage can be a performance bottleneck of any file system. A storage device may be able 
to sustain a very good single -port performance. However, having good single -port
performance is not sufficient for a shared disk file system like GUPFS. For GUPFS, the 
underlying storage devices must demonstrate a very good scalability wh en the number of 
clients increases (to thousands or tens of thousands). A shared file system will not scale if 
the underlying storage does not scale.
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Figure 1. Storage Scalability

Figure 1 shows how st orage devices scale when the number of clients increase. The 
figure shows the results of three storage devices: Yotta Yotta GSX 2400 (YY), Silicon 
Gear Mercury II (SG), and DotHill SANnet (DH). Both Silicon Gear and Dot Hill have 
only 2 1Gb/s front -end ports, while Yotta Yotta has 8 2Gb/s ports and 3PARdata has 16 
2Gb/s ports but only 8 were used during the test. On each storage device, we created a 
single LUN to be shared by multiple clients for shared access. 

The figure shows that both the Silicon Gear and Dot Hill devices did not scale when the 
number of clients increased. Silicon Gear performance actually dropped when the number 
of clients increased. On the other hand, the figure shows that the Yotta Yotta storage did 
scale very well when the number of clients increased.
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Figure 2. Storage Aggregate Performance

Figure 2 shows the aggregate performance of the three storage devices: DotHill, Silicon 
Gear, and Yotta Yotta, using the MPTIO benchmark w ith different test conditions. The 
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results indicate that the Yotta Yotta storage will be able to sustain higher performance 
than Silicon Gear or Dot Hill in a shared file system.

4.2 Parallel File I/O Performance
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Figure 3. Shared File System Performance

During the last year, we have tested several file systems, including Sistina’s GFS [4], 
ADIC’s StorNext File System [5], and Lustre [7]. The above diagram shows the 8 -client
MPTIO results on these file system, under different test scenarios. These results indicate 
that there is not much difference in parallel I/O performance between GFS and ADIC’s 
StorNext File System, except for ‘Cache Read’. ADIC’s StorNext File System was 
probably doing direct I/O even when operating on files that can fit in the OS cache.

With the award of the ASCI PathForward SGSFS [6] file system development contract to 
HP and Cluster File Systems, Inc., there has been rapid progress on the Lustre file system 
[7]. The earlier Lustre file system version (0.6) we tested failed to complete all but the 
‘Cache Write’ and ‘Cache Read’ tests. Luster1.0.0 was recently released and Figure 4 
shows the latest result of Lustre scalability with six clients and two Object Storage 
Servers (OSS). 
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The figure seems to indicate that reads and writes were limited by the GigE interface as 
the test was running with two OSS’s and each OSS was equipped with one GigE 
interface. Additional test with more OSS’s and tuning should improve performance.

4.3 Fabric Performance
Storage area networks, by providing a high performance network fabric oriented toward 
storage device transfer protocols, allow direct physical data transfers between hosts and 
storage devices. Currently, most SANs are i mplemented using Fibre Channel (FC) 
protocol-based fabric. Emerging alternative SAN protocols, such as iSCSI (Internet Small 
Computer System Interface), FCIP (Fibre Channel over IP), and SRP (SCSI RDMA 
[Remote Direct Memory Access] Protocol) [9], are enabl ing the use of alternative fabric 
technologies, such as Gigabit Ethernet and the emerging InfiniBand, as SAN fabrics. 

Here we present some performance results of several fabric technologies: Fibre Channel 
(FC), iSCSI over GigE, iSCSI over IP over Infiniband (IPoIB), and SRP.
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Figure 5. Storage Fabric Performance

Figure 5 shows the results of single -thread reads of different I/O size using different 
fabric technologies. The best performance was achieved by the 2Gb/s FC interfa ce,
followed by the SRP protocol over Infiniband. Since the iSCSI traffic was passing 
through a single GigE interface, the iSCSI performance was less than 100 MB/s. With the 
additional stack overhead of IPoIB, iSCSI over IPoIB delivered the lowest performa nce
for single-thread reads.

Figure 6 shows the CPU overhead of different protocols for single-thread reads. FC, 
while delivered the best performance, used the least CPU overhead.  The iSCSI protocol 
allows the standard SCSI packets to be enveloped in IP packets and transported over 
standard Ethernet infrastructure, which allows SANs to be deployed on IP networks. This 
option is very attractive as it allows lower-cost SAN connectivity than can be achieved 
with Fibre Channel, although with lower performance. It will allow large numbers of 
inexpensive systems to be connected to the SAN and use the shared file system through 

369



commodity-priced components. While attractive from a hardware cost perspective, this 
option does incur a performance impact on each host due to increased traffic through the 
host’s IP stack, as shown in Figure 6.
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5 Conclusions
The GUPFS project started in the last half of FY 2001 as a limited investigation of the 
suitability of shared -disk file systems in a SAN environment for scientific clusters, with 
an eye towards possible future center -wide deployment. As such, it was targeted towards 
initial testing of the Sistina Global File System (GFS), and included a small testbed 
system to be used in the investigation.

With the advent of the NERSC Strategic Proposal for FY 2002 –2006, this modest 
investigation evolved into the GUPFS project, which is one of the major programmatic 
thrusts at NERSC. During the first three years of th e GUPFS project, NERSC intends to 
test, evaluate, and influence the development of the technologies necessary for the 
successful deployment of a center -wide shared file system. Provided that an assessment 
of the technologies is favorable at the end of the first three years, the last two years of the 
GUPFS project will focus on a staged deployment of a high performance shared file 
system center-wide at NERSC, in conjunction with the consolidation of user disk storage, 
leading to production in FY 2006.
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Abstract

Modeling and simulation are flexible and effective tools to design and evaluate the per-
formance of Storage Area Network (SAN).  Fibre Channel (FC) is presently the dominant 
protocol used in SAN.  In this paper, we present a new simulation - SANSim, developed 
for modeling and analyzing FC storage network. SANSim includes four main modules: 
an I/O workload module, a host module, a storage network module, and a storage system
module. SANSim has been validated by comparing the simulation results with the actual 
I/O performance of a FC RAM disk connected to a FC network. The simulated results
match the experimental readings within 3%.  As an example of applicability, SANSim
has been used to study the impact of link failures on the performance of a FC network 
with a core/edge topology. 

1. Introduction 

SAN architecture has been proven to provide significant performance advantages, larger 
scalability, and higher availability over traditional Direct Attached Storage architecture. It 
is therefore not surprising that the performance modeling and simulation of SANs has 
become an interesting field of research [1][2]. Xavier [3][4] used the CSIM language to 
simulate a SAN and model its activities. Petra et al. [5] presented the SIMLab as a simu-
lation environment based on a network of active routers. Wilkes [6] used the Pantheon 
storage-system simulator to model the performance of parallel disk arrays and parallel 
computers. DiskSim [7] is another disk storage system simulator to support research in 
storage subsystem algorithm and architecture.

However, the simulation studies and tools mentioned above have been very limited in 
modeling and simulation at the FC protocol level. Nevertheless, it is necessary to simu-
late at the frame-level FC in order to monitor and analyze details of FC SAN activities.

In this paper, we present a new FC SAN simulation, SANSim, which supports FC frame-
level and fully simulates Fibre Channel protocols in accordance to the relevant standards
[10-13] to guarantee the compatibility and interoperability of different modules. In the 
following sections, we first introduce our simulation tool SANSim in section 2. Then, we 
present in section 3, the experimental results and simulation validation of a FC network. 
Finally, we simulate and analyze some FC network design issues in section 4.
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2. SANSim 

SANSim is an event-driven simulation tool for SAN that includes four main modules: an 
I/O workload module, a host module, a storage network module, and a storage system 
module, as shown in Figure 1.

The I/O workload module generates I/O request streams according to the workload
distribution characteristics and sends them to the host modules. The host module 
encapsulates the I/O workload to the SCSI commands and sends them to the Host Bus 
Adaptor (HBA) sub-modules. The storage network module simulates the network 
connectivity, topology and communication mechanism. The FC network module includes 
three sub-modules: a FC_controller module, a FC_switch module and a FC 
communication module. The storage module maps I/O data to the storage devices.

SANSim is developed in pure standard C. It has been compiled successfully both in 
Microsoft Window XP and Linux platforms. The simulator reads in configuration 
parameters from a user specified input file, plots measurement data, and writes data in an
output file after the simulation is completed. The simulation duration and the warm-up
period can also be specified in the input file to control and eliminate the transient bias in
the simulation results. The configuration parameters for each of the four modules are 
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arranged orderly in the input file.

2.1 I/O Workload module 

The key function of I/O Workload module is to generate I/O request streams according to 
the workload distribution characteristics and send them to the host modules. The current
module supports both system-traced I/O workloads and synthetic I/O workloads. We use 
a synthetic I/O workload in this paper. 

Generally speaking, a disk request is defined by five dimensions: the requested pattern, 
the size distribution, the repeatability, the location distribution and the I/O operations. 
The workload module is able to generate several basic different arrival patterns such as
Poisson arrivals, equal time intervals, Normal distribution arrivals and so on. It can also 
simulate a combination of request patterns that consists of the different distributions and 
different rates. Another capability of the Workload module is to generate repeatable re-
quests. This scenario is used to define a workload in which some files are more popular 
than others and consequently accessed more frequently.

2.2 Host module 

Host module includes a device driver, a SCSI layer, a system bus, as well as DMA mod-
ules.  The main function of the Host module is to encapsulate the I/O workload into the 
SCSI commands and sends them to the Host Bus Adaptor (HBA) sub-modules.

The host module schedules the I/O requests generated by the workload module, based on 
various schedule policies, which are configurable. The I/O requests are traced in a wait-
ing queue and an outstanding queue. An I/O request in the outstanding queue refers to a 
request, which has been submitted to the storage device, but has not been completed yet. 
The maximum number of outstanding requests depends on the buffer size and system
configuration. The I/O requests in the waiting queue may be merged or re-scheduled fol-
lowing certain policies.

The host module supports a multiple-host configuration. Each host has a separate I/O 
generation module. There is a specific mechanism to identify the I/O requests coming
from different hosts.

2.3 FC network module 

The key function of the FC network module is to simulate the FC connectivity, topology 
and communication protocol. The FC network module includes three sub-modules: the 
FC Controller module, the FC Switch module and the FC Port & Communication 
module, as shown in Figure 2. The FC Controller module simulates the communication 
behavior of  FC Commands or Data Frames. The FC Switch module models all the FC
Ports, switch architecture, and as well as the routing and flow control. The FC Port & 
Communication module transfers FC Frames between the FC Ports.

2.3.1 FC Controller module 
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The FC Controller module models both initiator and target modes of the FC HBA. As 
shown in Figure 3, the FC Controller module includes three sub-modules: a 
Bus_interface, an FCP( SCSI over Firbre Channel Protocol [13])  Engine and a FC Port. 
The Bus_Interface sub-module handles the communication between the device driver and 
the controller such as DMA and interruptions. The FCP Engine has the responsibility of 
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constructing different FC frames corresponding to each sequence of FCP exchange. The 
FC_Port is responsible for delivering FC frames to the destination port. 
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 Figure 3 FCP Operation 

When a SCSI request arrives in the initiator, the device driver sends SCSI commands to
the FC_Controller through the Bus_Interface. The FC_Controller then executes the 
commands and fetches SCSI I/O’s information from  memory. A FCP_CMND frame is 
constructed for each SCSI I/O  in the FCP Engine, and then  sent out through FC_Port 
module. After the target FC_Controller receives the FCP_CMND, the target firmware
decapsulates the FCP_CMND and processes the SCSI command.

In the case of a FCP Read operation (SCSI Read 10), the target host decapsulates the 
SCSI request and prepares the requested data. Once the data is ready, the target 
FC_Controller takes the responsibility of transferring data back to the requestor (the 
initiator) and sends a completion message FCP_RSP after all data is sent. With a FCP 
Write operation (SCSI Write 10), the target driver allocates sufficient memory area for
the incoming data, and sends a FCP_XFER_RDY to the initiator  requesting the data.
After the initiator receives the FCP_XFER_RDY, it starts to send a FCP_DATA. Finally
when the target receives all data successfully, it sends a FCP_RSP indicating the 
completion of the FCP operation. 

2.3.2 FC Switch module 

SANSim FC Switch module has two sub modules: FC port, and FC Switch core. FC port 
supports F_Ports/FL_Ports and E_Ports. F_Ports/FL_Ports are for host-switch and de-
vice-switch connections, and E_Ports are for switch-switch inter-connections. The
FC_Port’s address_ID is unique and confined to the FC-SW-2 standard [11]. FC Switch 
core is the switch’s control center for frames routing and forwarding. It contains routing 
and internal cross-bar. If the destination port of requested FC frames is busy, the incom-
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ing frames are held in the incoming buffer until they are successfully routed. SANSim
uses Dijkstra’s algorithm [14] to compute the shortest routing path. The routing table re-
mains constant unless the network connectivity is changed during the simulation. When 
the network configuration is changed, the switch module re-computes the shortest path.

2.3.3 FC Port & Communication module

The FC Port & Communication module includes a Frame Buffer management and FC 
connection sub modules. The Frame Buffer management sub module handles all 
management of  incoming and outgoing frame buffers. The FC connection sub module
establishes a FC connection between two FC_Ports used to transfer frames.

The Fibre Channel Arbitrated Loop (FC-AL) is a typical sub FC connection sub module
used in the simulation. The FC-AL  connection module consists of the following sub 
modules: Loop Port State Machine (LPSM), Alternative BB Credit Flow Control (Alt BB 
Mgr), and Loop Port Process Control (LPPC). The LPSM models the L_Port's state 
transition during the communication. The L_Port transmits FC Frame only when it is in
certain states. The number  of frames permitted to be transmitted depends on the 
available  buffer size in the destination port. The Alternative BB Credit Flow Control sub 
module models the flow control method defined in the Standard [10] to avoid overflow. 
The Loop Port Process Control sub module models the remaining behavior of the L_Port, 
such as responding to a certain loop port request, re-transmitting an ARBx signal and 
other port activities.

2.4 Storage module

The main function of the storage module is to map I/O data to the storage devices. 
Storage modules, which include interface module (HBA), storage controller module and 
storage device module, can simulate a RAID system with various cache management
algorithms, disk drives, and RAM disks. In the event of disk failure in a RAID system, 
the degraded mode and rebuild behavior can also be modeled. Various RAID algorithms
can be integrated into the storage modules.

3. Simulation Validation

3.1 Experimental environment

The experiments were conducted on an in-house developed FC RAM disk, which maps
all storage I/Os to the memory rather than using an actual magnetic disk. Since we are 
focusing on the FC simulation and validation, using RAM disk as a target helps to isolate 
problems caused by the modeling of a hard disk drive.  The initiator and target use a FC-
AL connection. Table 1 lists the detailed hardware and software configurations used in 
the experiments. I/OMeter, a widely accepted  industry standard benchmark tool, is used 
here to collect experimental data.   The monitored parameters include IOPS (I/O per sec-
ond), throughput (MB/s), queue depth, I/O request size, and read/write operations. The 
IOPS is used primarily with small I/O requests, while the throughput is used with large 
I/O requests. The queue depth refers to the number of outstanding I/O requests, which are 
injected into the FC network and storage system. The I/OMeter issues a number of re-
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quests (equals to the queue depth) initially, and generates new I/O requests only after the
completion of previous requests. Fixed I/O sizes were used in all requests. 

Table 1   System configuration for SANSim FC-AL module validation

Initiator
Hardware CPU: AMD AthonMP 1600+ 

FC HBA: Qlogic 2300 
RAM: 2x256MB DDR SDRAM 

Main board: 64 bit PCI Tyan Tiger MP2466N 
Software OS: Windows XP Professional SP1 

Driver: Qlogic Driver Version 8.1.5.12 
Tool: Intel IOMeter Version 2003.02.15 

Target
Hardware CPU: Intel PIII 1GHz 

FC HBA: Qlogic 2300 
RAM: 4 x 1GB Kingston ECC Reg. PC133

Main board: 64bit PCI,  Supermicro 370 
Software OS: RedHat 8.0 

Kernel: 2.4.18 
Driver:  In-house 2300 target driver Version 1.0, 

In-house Linux RAM Disk Version 2.0 

3.2 Comparisons of the experimental and simulated data 

Figure 4 and 5 show that I/O transaction performance varies with the queue depth with 
read and write operations. The I/O sizes are set to 2KB, 8KB, 16KB, and 32KB respec-
tively. The IOPS increases with the queue depth and then reaches a saturation limit. In 
other words, there is a critical queue depth. When the queue depth is bigger than this 
critical value, the system transaction performance shows no improvement and the re-
sponse time for I/O request becomes worse. For example, when an I/O size is 8KB and 
IOMeter sends 100% of read operations, the maximum transaction performance is 17.5k 
IOPS. This translates into a network and storage overhead means of around 0.057ms
(1second/17.5k). Simulation results show that the average response time is about 0.471ms
when queue depth equals to eight. The largest contribution in the  response time is from
the queue waiting time, not the serving time.

Figure 6 and 7 show that the throughput (MB/s) varies with the I/O request size with 
read/write operations. The queue depths are set to 1, 2, and 8 respectively.  Generally, the 
throughput increases with I/O request sizes. When the request size is large enough (more 
than 128KB with queue depth of 8), the data transfer time dominates the overall overhead. 
Then the throughput is limited by the FC network bandwidth.
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The simulation results and experimental data match very well in all cases as illustrated in 
figures 4-7. The error range is generally less than 10%. With read operations, it is less
than 3%.
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Figure 4 Read performance vs. queue depth  Figure 5 Write performance vs. queue depth 
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  Figure 6 Read throughput vs. I/O size         Figure 7 Write throughput vs. I/O size 

4. FC Network simulation and analysis

4.1 Simulation Environment 

To illustrate an application of SANsim, the performance and availability of a FC network 
are simulated and analyzed in this section. We conducted a simulation based on the
core/edge network with five FC switches, as shown in Figure 8.  FC switches 1-4, as edge 
switches, are connected to the core switch 5 through two 2G FC ISLs. Each FC controller 
has 32 frame buffers.  Each FC port on a switch has four frame buffers. The distance be-
tween any two points in the network is set to be 50 meters. The storage controller proc-
essing capacity is 22.5K transactions per second.
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Figure 8 Simulation configuration

A synthetic I/O workload is applied to each server. The I/O inter-arrival time follows an
exponential distribution. The maximum number of outstanding I/O requests is 32 for each 
server. Since the simulation is based on an open system, the I/O queue in the server is 
allowed to grow without limitation. However, the servers issue a new request to the net-
work and storage devices only after a previous request is completed. The IO requests are 
randomly and evenly allocated among all devices.

4.2 Simulation Results and Analysis

In order to study the impact of link failure on the network throughput, we conducted a 
series of simulations under four different scenarios: no link failure, ISL1 failure, ISL8
failure and simultaneous  failures of  ISL1 and ISL8. The throughputs of all servers are 
collected using 2KB and 32 KB request sizes. Servers 1 through 4 have the same charac-
teristics and achieve similar throughput results. We use an average throughput S1-4, as
shown in Figure 9, to represent the performance of Server 1 though 4.  Same process is 
applied to server 5 through 8.

Figure 9(a) shows the throughputs as a function of  I/O workload for case I (without link 
failure). The throughputs grow linearly and then reach asymptotic values. All servers 
achieve the same throughputs due to the symmetrical characteristics of the network. 
When the I/O size is 2KB, the maximum throughput is 45MB/s. Since the process capac-
ity of the storage device is 22.5k transactions per second, it limits the maximum through-
put to 45MB/s for 2KB I/O size. When the I/O size is 32KB, the maximum throughput 
for each server is 80MB/s. The total throughput for a single network link is 160MB/s and 
that is 20% less than the nominal value 200MB/s. The simulated results show that the 
maximum throughout supported by a single storage device is 175MB/s for 32KB I/O size. 
That means the performance is not limited by the storage devices, but by the network.
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 Figure 9 Maximum throughputs under symmetrical I/O load for different cases 

Figure 9(b) shows the throughput for the case II (with ISL1 failure). When the I/O size is 
32KB, the asymptotic throughput of servers 1~4 drops to 46MB/s, compared to 80MB/s 
in case I. Apparently, this is due to the limited bandwidth of a single link ISL2.  It is also 
noted that a large performance drop happens with servers 5~8 (58MB/s vs. 80MB/s) 
compared to case I, even though the ISL1 has no direct physical connection to those serv-
ers. This decrease in performance is probably caused by the head-of-line blocking [15]. 
The data traffics from storage devices to servers 5~8 are competing at the core switch 5 
with the data traffics from storage devices to servers 1~4. When the I/O size is 2KB, the 
throughput of servers 1~4 approaches to 44MB/s which is slightly less than the 45MB/s 
in the case I. This is caused by the competition of data traffic on the highly utilized ISL2
link. The bandwidth utilization of ISL2 reaches 176MB/s over 200MB/s.

For case III (with ISL8 failure), the maximum throughputs for servers 1~4 and servers 
5~8 drop from 80MBs in case I to an average of around 50MB/s, as shown in Figure 9(c), 
when the I/O size is 32KB. The reason why servers 1~4 and servers 5~8 achieve the same
maximum throughput is because the data traffics from storage devices 1~4 to servers 1~8
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are equally affected by ISL8 failure. When the I/O size is 2KB, the maximum throughput
is almost not affected by the ISL8 failure compared to case I. 

When both ISL1 and ISL8 fail (case IV), the measured throughputs of servers are shown 
in Figure 9 (d). When I/O request size is 32KB, the asymptotic throughput of server 1-4 
reaches 40 MB/s while the throughput of servers 5-8 is about 42MB/s. However, when 
the I/O size is 2KB, the throughput of servers 1~4 is only 35MB/s, and servers 5~8 is 
46MB/s. In order to analyze the detailed frame activity on the network, data traffic across
ISL1~4 and ISL5~8 are monitored and the average I/O response time are measured. The 
results show that the response time of the I/O issued by servers 1~4 to storage devices 
1~8 becomes significant long (>2ms) when the I/O workload is larger than 36.5MB/s. 
This allows the storage devices to serve more I/O requests issued by servers 5~8. So 
servers 5~8 can achieve better performance than servers 1~4 when the I/O size is 2KB.
However, when the I/O size is 32KB, the response time of I/O requests issued by servers 
5~8, increases notably due to the effects of header-of-line blocking.  It limits the per-
formance of the servers 5~8 to 42MB/s with 32 KB I/O size.

5. Summary and future work

In this paper, we have presented SANSim, a platform for simulation and design of a FC 
SAN. The SANSim, which is based on FC frame level, can simulate all primitive signals
(IDLEs, RDYs etc), commands and data frames. The design of SANSim is modular and 
scalable. Such tool is useful to the rapid development of high-end SAN due to the ever-
increasing complexity of the SAN architecture.

We have conducted several experiments to compare experimental and simulated results. 
The results show that SANSim model is accurate within less than 3% in read operation,
and less than 10% in write operation. As an example, the performance and availability of 
a core/edge FC network has been analyzed. The simulation results show that the 
core/edge topology suffers from certain level of bandwidth loss due to the Head-of-Line 
blocking caused by traffics crossing multi-stage switches. Generally, the maximum
throughput achieved at all servers decreases when link failure happens. The servers on 
different locations have different I/O performance sensitivity to the link failure.

Future development work of SANSim includes IP storage module, Object-based storage 
module, file system simulation.
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Abstract

This paper presents a performance study of the
iSCSI protocol in the context of remote mirroring.
We first integrate our caching technology called DCD
(disk caching disk) into a standard iSCSI target de-
vice to form a high performance storage system for
mirroring purpose. Performance measurements are
then carried out using this storage system as well as
standard iSCSI targets as mirroring devices. We con-
sider remote mirroring on a LAN (local area network)
and on a commercial WAN (wide area network). The
workloads used in our measurements include popu-
lar benchmarks such as PostMark and IoMeter, and
real-world I/O traces. Our measurement results show
that iSCSI is a viable approach to cost-effective re-
mote mirroring for organizations that have moderate
amount of data changes. In particular, our DCD-
enhanced iSCSI target can greatly improve perfor-
mance of remote mirroring.

1. Introduction

Remote data mirroring has become increasingly
important as organizations and businesses depend
more and more on digital information [1]. It has been
widely deployed in financial industry and other busi-
nesses for tolerating failures and disaster recovery.
Traditionally, such remote mirroring is done through
dedicated SAN (storage area network) with FC (Fiber
Channel) connections that are usually very costly

in terms of installation and maintenance. A newly
emerging protocol for storage networking, iSCSI [2],
was recently ratified by the Internet Engineering Task
Force [3]. The iSCSI protocol is perceived as a low
cost alternative to the FC protocol for remote storage
[4][5][6][7]. It allows block level storage data to be
transported over the popular TCP/IP network that can
cover a wide area across cities and states. Therefore,
the iSCSI lends itself naturally to a cost-effective can-
didate for remote mirroring making use of the avail-
able Internet infrastructure.

The viability of iSCSI protocol for remote mirror-
ing depends, to a large extent, on whether acceptable
performance can be obtained to replicate data to a re-
mote site. While there are studies reported very re-
cently on the iSCSI performance on LAN networks,
campus networks, and emulated WAN [4][5][6][7],
the open literature lacks technical data on the perfor-
mance of the iSCSI protocol for remote mirroring over
a realistic commercial WAN. The objective of this pa-
per is two fold. First, we incorporate our new storage
architecture to an iSCSI target to enhance write per-
formance specifically for remote mirroring purposes.
Secondly, we carry out measurement experiments to
study the performance of the iSCSI protocol for re-
mote mirroring on both a LAN and a commercial
WAN network.

Our new storage architecture is referred to as DCD
(disk caching disk) [8][9]. The idea is to use a log
disk, called cache-disk, as an extension of a small
NVRAM to cache file changes and to destage cached
data to the data disk afterward when the system is idle.
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Figure 1. Experimental settings for performance measurements of iSCSI remote mirroring.

Small and random writes from the iSCSI network are
first buffered in the small NVRAM buffer. Whenever
the cache-disk is idle or the RAM is full, all data in the
RAM buffer are written sequentially in one data trans-
fer into the cache-disk. The RAM buffer is then made
available quickly to absorb additional requests so that
the two-level cache appears to the iSCSI network as
a huge RAM with size of a disk. When the data disk
is idle, a destage operation is performed, in which the
data is transferred from the cache-disk to the normal
data disk. Since the cache is a disk, it is cost-effective
and highly reliable. In addition, the log disk is only a
cache that is transparent to the file system and upper
layer applications.

We incorporated our DCD into the iSCSI target
program [10] that is used as a storage device for re-
mote mirroring purpose. We carried out measure-
ment experiments in two different settings: one in-
side our laboratory and the other over a commercial
WAN through Cox-business Internet services. Our ex-
periments with the real world commercial WAN give
us great insightful experiences that may not be possi-
ble using emulated WAN in a laboratory [4][5][6][7].
We measured a variety of benchmarks and real world

I/O traces widely used in the file system and storage
system communities. Measured results show that the
iSCSI protocol is a viable and cost-effective approach
for remote mirroring. It is particularly useful to small
to medium size organizations to deploy economical
remote mirroring for tolerating site failures and disas-
ter recovery when the cost of losing data matters.

2. Experimental Methodology

Figure 1 shows the two experimental setups for our
experiments. Our first experiment was carried out in-
side our laboratory as shown in Figure 1(a). Several
server hosts are connected to a mirroring storage sys-
tem through an Intel NetStructure 470T Gigabit Eth-
ernet switch. The server hosts act as iSCSI initiators
while the mirroring storage system acts as an iSCSI
target. Our second experimental setting is over a re-
alistic commercial WAN through Cox Business Ser-
vices. The iSCSI initiators in the LAN inside our
laboratory are connected through our campus network
and leased lines to the educational Internet. They are
then connected to a website of a business office, Elake
Data Systems, Inc., on the Cox Communications Inc.
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cable network. The business office is used as a re-
mote mirroring site that is located in a different town
several miles away from our university campus. The
down stream speed to the mirroring site is theoreti-
cally 3 Mbps and the upstream speed is theoretically
256 Kbps. Because of sharing of cables, the actual
speed varies depending on network traffic and the time
of a day. We found that during our experiments that
the actual speeds vary from 40.7 KBps to 294 KBps.
The cost of such a business connection is less than
$100/month in New England area. We believe that
such a connection and its cost represent a typical net-
work connection for small to medium size businesses
that mirror moderate amount of their business data at
a remote site for failure tolerance and disaster recov-
ery. As indicated in [1], the cost of leasing a WAN
connection with speed of 155Mbps could cost about
$460,000/year. Our objective here is to analyze the
backup performance of the iSCSI protocol over an in-
expensive WAN network where the iSCSI protocol is
likely to be used for cost effectiveness.

All machines used in the experiments are Dell
servers equipped with a single Pentium III 866MHz
CPU, 512MB SDRAM, and the Intel Pro1000T Gi-
gabit NIC (network interface card). We run Red-
hat 9 as the operating system with recompiled Linux
kernel 2.4.20. Our iSCSI implementation is based
on the implementation ref20 19b from University of
New Hampshire [10]. The SCSI controllers we used
are Adaptec AIC7899 Ultra 160 controller. All SCSI
disks we used in our experiments are 18GB Seagate
ST318452LW Ultra 160 disks. When two disks need
to be connected to the same SCSI controller, we con-
nect them to different channels.

At the iSCSI target, our DCD system is inte-
grated with the iSCSI target software. Random and
small write requests coming from the network are first
buffered in the 32MB NVRAM buffer and the target
acknowledges immediately to the server host for write
completion. These small write requests are collected
to form a log to be moved sequentially to the cache
disk as soon as the cache disk is idle or the data in the
NVRAM exceeds a predetermined watermark. As a
result, there is always a room in the NVRAM buffer to
accept new requests and the two-level hierarchy con-
sisting of the RAM buffer and the cache disk appears
to the network as a large RAM absorbing write re-

quests quickly. In our current implementation, we use
part of the host memory to emulate the NVRAM. Our
previous experiments have shown that the maximum
time before the data in the NVRAM buffer are moved
to a disk is usually less than 100 milliseconds, which
guarantees the safety of mirrored data even a DRAM
buffer is used instead of the NVRAM provided that a
UPS is used. Destaging operations between the cache
disk and the data disk are done when the target storage
system is idle.

Our remote mirroring software is based on the
RAID1 code in the Linux kernel. There are two de-
vices in a typical mirroring configuration, one is a pri-
mary device and the other is a secondary device. In
a production implementation, there might be one or
more spare devices available. Since we are interested
in the performance of remote mirroring, we only con-
sider the two-device configuration here. The mirror-
ing software exports a block device to the operating
system and applications that is very similar to the nor-
mal RAID1 device such as /dev/md0 or /dev/mdx. All
read requests are sent to the primary device only while
all write requests are sent to both devices. A write re-
quest sent from a upper layer is acknowledged as be-
ing finished only after the mirroring software receives
acknowledgments from both devices. Therefore, our
mirroring software falls into the category of ”lock-
step” or ”synchronous” mode as defined by Ji et al
[1]. The following is a list of hardware configurations
that our experiments are based on:

� A primary SCSI disk with another SCSI disk as
the mirroring device (S-S). We use a local SCSI
disk to mirror another SCSI disk in the same sys-
tem. This is a baseline configuration as a refer-
ence for comparison purpose.

� A primary SCSI disk with an iSCSI target de-
vice on a LAN as the mirror device (S-iL). In
this configuration, we use an iSCSI target device
on a LAN to mirror a local SCSI disk.

� A primary SCSI disk with an iSCSI target device
on a WAN as the mirror device (S-iW). In this
configuration, we use an iSCSI target device on
a WAN to mirror a local SCSI disk.

� A primary SCSI disk with a DCD-enhanced
iSCSI device as the mirroring device (S-iD). This
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TPC-C20 Financial-1 Financial-2

Number of requests 10,000,000 2,452,167 2,733,121
Number of write requests 2,965,750 1,502,641 480,529
Request size range 4096B-126,976B 1024B-17,116,160B 1024B-262,656B
Mean Request Size 47,063B 3,855B 2,508B
Write Size Range 4096B-126,976B 1024B-17,116,160B 1024B-262,656B
Mean Write Size 4,710B 4,838B 3,107B
Request per second 192 57 67
Write per second 57 35 12

Table 1. Characteristics of the traces used in our experiments

configuration incorporates our DCD technology
into the iSCSI target device for mirroring pur-
pose. Similarly, such DCD-enhanced iSCSI stor-
age can be either located on the LAN designated
as S-iDL, or located on the WAN referred to as
S-iDW.

The workloads used in our experiments consist of
popular storage benchmarks such as PostMark [11],
IoMeter [12], and real world traces. PostMark [11]
is a widely used [13][14] file system benchmark tool
from Network Appliance, Inc.. It measures perfor-
mance in terms of transaction rates in an ephemeral
small-file environment by creating a large pool of con-
tinually changing files. Once the pool has been cre-
ated, a specified number of transactions occur. Each
transaction consists of a pair of smaller transactions,
i.e. Create file or Delete file and Read file or Append
file. Each transaction’s type and files it affected are
chosen randomly. The read and write block size can
be tuned. On completion of each run, a report is gen-
erated showing some metrics such as elapsed time,
transaction rate, total number of files created and so
on.

The IoMeter is another highly flexible and config-
urable synthetic benchmark tool that is also widely
used in various research works. IoMeter can be used
to measure the performance of a mounted file system
or a block device. For a mounted file system, it gen-
erates a large size file as the workplace and performs
various configurable operations. For a block device,
for example, a SCSI disk /dev/sda1, a RAID or mir-
roring device /dev/md0, IoMeter treats it as a normal
file and directly reads or writes on it after opening it.

Besides the above benchmarks, real world traces
are also used in our experiments. The first trace is
TPC-C20 that is a block level trace downloaded from
the Performance Evaluation laboratory at Brigham
Young University. They had run TPC-C benchmark
with 20 data warehouses using Postgres database on
Redhat Linux 7.1 and collected the trace using their
kernel level disk trace tool, DTB [15]. The other
two traces are I/O traces from OLTP applications run-
ning at two large financial institutions, Financial-1
and Financial-2. They represent typical workloads of
financial industries and are made available by Stor-
age Performance Council in partnership with the Uni-
versity of Massachusetts who together are hosting a
repository of I/O traces for use in the public domain
[16]. Table 1 shows the characteristics of the traces
that we use.

3. Results and Discussions

3.1. PostMark Results

Our first experiment is to measure the mirror-
ing performances of PostMark benchmark. Figure 2
shows our measured times for finishing 100,000 trans-
actions on 10,000 files of the PostMark benchmark.
The total amount of data generated by the PostMark
is about 700MB. We varied the proportion of write
requests of all transactions in the benchmark between
50% and 30% and plotted them separately as shown in
Figure 2. Let us first consider mirroring on the LAN
network. As shown in Figure 2(a), it takes longer
time to finish all the transactions when mirroring data
using iSCSI target than mirroring data using a local
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Figure 2. PostMark results: total time to finish 100,000 transactions on 10,000 files

Figure Legend for Figure-2 through Figure-4:
S-S: SCSI disk and SCSI disk mirroring.
S-iL: SCSI disk and iSCSI disk mirroring over a LAN.
S-iDL: SCSI disk and DCD-enhanced iSCSI disk mirroring over a LAN.
S-iL3: SCSI disk and iSCSI disk mirroring over a LAN with 3 parallel iSCSI connections.
S-iDL3: SCSI disk and DCD-enhanced iSCSI disk mirroring over a LAN with 3 parallel iSCSI connections.
S-iW: SCSI disk and iSCSI disk mirroring over a WAN.
S-iDW: SCSI disk and DCD-enhanced iSCSI disk mirroring over a WAN.
S-iW3: SCSI disk and iSCSI disk mirroring over a WAN with 3 parallel iSCSI connections.
S-iDW3: SCSI disk and DCD-enhanced iSCSI disk mirroring over a WAN with 3 parallel iSCSI connections.
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SCSI disk. However, the time difference is not as sig-
nificant as we initially expected, about 16% longer
than that of local mirroring. It is interesting to ob-
serve that remote mirroring using the DCD-enhanced
iSCSI disk takes shorter time than local disk mirror-
ing. This is because DCD hides many seek times and
rotation latencies of small writes by combining them
into large logs to the cache disk, while with local disk
mirroring, every write operation has to wait for two
disk writes both requiring seek times and rotation la-
tencies. Similar performance trends were observed
for smaller write proportion as shown in Figure 2(b).
While the total transaction times are shorter with 30%
of writes because only write operations go to remote
storage for mirroring, the relative difference between
local mirroring and iSCSI mirroring keeps almost the
same, about 15%.

iSCSI standard suggests that parallel iSCSI con-
nections in a session may help improving its perfor-
mance. To observe the effect of parallel connections
on iSCSI performance, we measured transaction times
with three concurrent connections as shown in the bars
graphs marked with suffix 3. From our experiments,
it seems that parallel connections do not show sig-
nificant advantages over single connection. We be-
lieve that there could be two possible reasons that lead
to the similar performances between parallel connec-
tions and single connection. One is the specific iSCSI
implementation of UNH and the other is the low traf-
fic intensity of PostMark. It remains open whether
and how iSCSI can benefit from parallel and concur-
rent connections.

PostMark results for iSCSI mirroring over the
WAN are shown in Figure 2(c) and Figure 2(d) for
50% writes and 30% writes, respectively. Clearly,
synchronously mirroring data over the WAN increases
the total transaction time dramatically. Compared
to local mirroring, the total time to finish the same
100,000 transactions is more than tripled, from 189s
to 535s. To gain some insight to why it takes such a
long time to mirror over the WAN, we measured the
RTT (round trip time) between our initiators and the
target. While RTT fluctuates from time to time, we
found the average RTT value to be around 14 ms. This
round trip delay is on the same order as a disk opera-
tion including seek time, rotation latency and transfer
time. For each write operation issued by the bench-

mark, it has to wait for the mirroring write that has
to experience the RTT and a disk operation. As a
result, the total transaction time is increased dramat-
ically. The good news is that our DCD technology
can help greatly. As shown in the figure, using DCD-
enhanced iSCSI target for mirroring over the WAN,
the total transaction time is reduced by half from that
of pure iSCSI target. This improvement can be at-
tributed to the effective caching of the DCD tech-
nology. Compared to the local disk mirroring, the
DCD-enhanced iSCSI mirroring over the WAN shows
about 40% increase in terms of total transaction time
for pure synchronous/lock-step mode. Compared to
iSCSI mirroring over a LAN, the difference is about
24%. We believe this is quite acceptable since this
mirroring mode will essentially never lose data. Of
course, one can allow some degree of asynchrony to
obtain better performance. It would be interesting to
compare our results here with the traditional FC-SAN
mirroring, which we were not able to do because of
lack of such FC-SAN facility. For smaller percentage
of write operations as shown in Figure 2(d), similar
relative performances were observed though the abso-
lute transaction times are shorter because of smaller
number of writes.

3.2. IoMeter Results

Our second experiment is to measure the mirroring
performances of various configurations using IoMeter
benchmark. We configured the IoMeter to generate
two types of synthetic workloads, one is 100% writes
and the other is 50% writes and 50% reads. Both
workloads use random addresses with fixed block size
of 4 KB. To minimize the truncation effect that will be
explained shortly, we set duration of measurement for
each point to 1 hour and reported the average write re-
sponse time and the maximum response time for each
configuration as shown in Figure 3.

Comparing the performance of the local mirror-
ing with that of iSCSI mirroring on a LAN shown
in Figure 3(a), IoMeter showed a much larger differ-
ence than PostMark did. We believe such a large dif-
ference in terms of average response time is the re-
sult of higher traffic intensity of the IoMeter bench-
mark. With 100% writes, the IoMeter continuously
generates write requests one after another to both pri-
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Figure 3. Testing results of IoMeter.

mary disk and the mirroring disk. As a result, it
creates a lot of traffic over the network for mirror-
ing data. One may argue that IoMeter generates re-
quests back to back implying that it does not generate
a new request until the previous request is acknowl-
edged. However, because IoMeter uses asynchronous
writes, it receives an acknowledgment as soon as the
write is done in the file system cache. A queue of
write requests may be formed giving rise to multiple
write requests outstanding on the network. Such a
queuing effect increases response time very rapidly.
It is also this queuing effect that makes the perfor-
mance improvement of the DCD-enhanced iSCSI mir-
roring more pronounced, almost 4 times improvement
as shown in Figure 3(a). The queuing effect is sub-
stantially reduced if we decrease the write ratio from
100% to 50% as shown in Figure 3(b). In this case,
we observed a smaller relative difference between lo-
cal mirroring and iSCSI mirroring, and between iSCSI
mirroring and DCD-enhanced iSCSI mirroring due to
reduced write traffic.

For mirroring over the WAN network, the average
write response time of using the iSCSI target is 19.4

ms and the response time of using the DCD-enhanced
iSCSI target is about 11.9 ms as shown in Figure
3(a). The improvement of the DCD-enhanced iSCSI
target over the iSCSI target is about 63%. Putting
these results in a different perspective, a computer
user would experience 19.4 milliseconds or 11.9 mil-
liseconds delay on average if every write operation
were synchronously backed up in a remote site using
the iSCSI protocol. Note that these delays correspond
to the workload that the user performs write opera-
tions continuously one after another. If 50% of con-
tinuous disk I/O operations were writes, the average
response times would be lower, 8.3 ms and 5.8 ms for
the iSCSI target and the DCD-enhanced iSCSI target,
respectively as shown in Figure 3(b). Although the
average response times are not outrageous, the maxi-
mum response times are noticeably large as shown in
Figure 3(c) and (d). The maximum response time goes
as high as 26 seconds for 100% writes and 6.3 sec-
onds for 50% writes. These high maximum response
times suggest that some kind of asynchronous mirror-
ing should be desirable if write traffic is very high.
In real world applications, the amount of write opera-
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tions is limited and many organizations write less than
3 GB of data per year [17]. We noticed that while the
DCD-enhanced iSCSI mirroring shows better average
response time, its maximum response time is higher
than other configurations. This is because that the tar-
get is very busy at that time point and it can hardly
find idle time for destage operations. This result is
consistent with our previous studies and observations
that the DCD is beneficial only when the system can
find idle time to carry out destage operations.

In our experiments with the IoMeter benchmark,
we found several abnormal phenomena that are hard
to explain. One of them is that the DCD-enhanced
iSCSI mirroring shows significant lower average re-
sponse times than the local SCSI disk mirroring. An-
other phenomenon is the truncation effect as men-
tioned in the beginning of this subsection. To under-
stand these phenomena, we wrote a micro-benchmark
program that continuously performs random writes of
4 KB blocks to a file with the system RAM being set to
256 MB. We measured the total times to finish 50,000
writes and 200,000 writes for three different cases: (1)
synchronous writes, (2) asynchronous writes, and (3)
asynchronous writes with forced flushing at the end.
All the mirroring configurations are in a LAN environ-
ment. The asynchronous writes mimic the behavior of
IoMeter because IoMeter records time stamp for each
request individually and reports performance statistics
of all finished transactions at the end of each test run.
At the end of each test run, there may be writes done
in the cache but no yet written into disks. The asyn-
chronous writes with forced flushing at the end will
ensure that all write requests generated in a test run
are actually written into disks. As a result, the timing
difference between the asynchronous writes and asyn-
chronous writes with forced flushing is the truncation
effect. Tables 2 and 3 show the measured results.

S-S S-iDL S-iL

SYNC 273 273 649
ASYNC 161 153 208
ASYNC+Flush 171 155 515

Table 2. Total time in seconds to finish 50,000
transactions by the microbenchmark.

S-S S-iDL S-iL

SYNC 1075 1075 2702
ASYNC 666 623 1666
ASYNC+Flush 677 671 2000

Table 3. Total time in seconds to finish
200,000 transactions by the microbench-
mark.

For synchronous writes, we can see that both local
mirroring and DCD-enhanced iSCSI mirroring have
the same performance which is bounded by the slow-
est device that we believe is the primary disk. The
iSCSI mirroring, however, takes longer time because
the iSCSI target may be slower than the primary disk
some times during the experiment. For asynchronous
writes, the DCD-enhanced iSCSI mirroring shows
advantages and even performs better than the local
disk mirroring because the performance is no longer
bounded by the primary disk because of cache effects.
The performance difference increases as the num-
ber of transactions increases from 50,000 to 200,000.
Similarly, the performance improvement of the DCD-
enhanced iSCSI mirroring over iSCSI mirroring also
increases as the number of transactions increases from
50,000 to 200,000.

The truncation effects are also shown in the tables
as the performance differences between asynchronous
and asynchronous with forced flushing. This differ-
ence can be as large as 148% as in the case of S-iL col-
umn for 50,000 requests. Such truncation effects did
show when measuring the IoMeter performance with
short measuring time of a few minutes. Therefore, we
purposely enlarged the duration of each test run to 1
hour for each point of performance data. As shown in
the tables, when we increase the length of test from
50,000 to 200,000 requests, the truncation effect re-
duced from 148% to 20% for the case of iSCSI mir-
roring. Similarly, the difference becomes negligible
for the local mirroring case for longer test run. How-
ever, for some reason that we are not able to explain,
the truncation effect increases a little bit (about 7%)
for the DCD-enhanced mirroring after increasing the
testing time. We believe that it may be the result of
the destage process of the DCD system similar to the
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phenomenon shown in Figure 3(c,d).

3.3. Traces Results

Figure 4(a) shows the average response times with
the three types of the mirroring schemes for the three
traces: Financial-1, Financial-2, and TPC-C. Similar
performance results to that of the Postmark were ob-
served. If the iSCSI protocol is to be used for remote
mirroring, it is important to know the maximum delay
caused by iSCSI protocol to determine which mirror-
ing approach to take. We therefore plotted the mini-
mum and maximum response times for three different
mirroring schemes as shown in Figure 4(b) and 4(c).
It is important to note that the real world workloads
are quite different from the benchmarks in that one
can always find idle time to take full advantage of the
DCD technology. As shown in the figures, the max-
imum response time of the DCD-enhanced iSCSI is
constantly the lowest among the three, implying its
smooth and steady performance. The pure iSCSI, on
the other hand, takes as much as 2 seconds maximally
to mirror a write as shown in the figure. Therefore, it
is advisable to use some kind of asynchronous mirror-
ing approaches if an application cannot wait for such
a long time.

The performance of remote mirroring over a realis-
tic WAN network is shown in Figure 5. We drew here
the response time plots of two traces, Financial-1 and
Financial-2, mirroring over the WAN using the DCD-
enhanced iSCSI only. As shown in this figure, the re-
sponse times are noticeably much larger than those in
the LAN. The maximum response time is as high as 13
seconds for Financial-1 and 5 seconds for Financial-2.
The average response times are 733ms and 405ms for
Financial-1 and Financial-2, respectively. However,
majority of remote write operations can finish within
one second for both cases as shown in this figure.

When converting the traces to SCSI requests, we
used 16 parallel threads and each thread generates an
SCSI request to the iSCSI initiator according to the
time, address and size of one entry of the trace. Af-
ter a request is issued, the thread waits for the re-
sponse before generating another SCSI request. Be-
cause packet response times fluctuate greatly on a re-
alistic WAN, it may happen that all our 16 threads are
busy (blocked) waiting for responses while a new I/O

request in the trace is supposed to be issued according
to the trace timing. As a result, some write requests in
the traces may get skipped until a thread is released.
For the experiments reported in Figure 5, we observed
that the initiators skipped about 6.55% of writes in the
Financial-1 trace and 1.57% in the Financial-2 trace.
Note that such skipping would not have happened in
real applications but just slowed down the write pro-
cess. It happened in our experiments because of our
applying the traces collected in a fast environment to
a slow environment.

To avoid skipping write requests in the traces, we
carried out write coalescing at the iSCSI initiator side.
Figure 6 shows the response time plots with write co-
alescing. The write coalescing size is 8 consecutive
write requests. That is, each thread collects 8 con-
secutive writes and issues one write as a batch re-
sulting from coalescing the 8 write operations. With
this write coalescing, the 16 threads are able to is-
sue 100% of write requests in both Financial-1 and
Financial-2 traces. The response times plotted in Fig-
ure 6 correspond to the batch write operations. As
shown in Figure 6, the response times for remote mir-
roring fluctuate but the maximum response times are
lower than those in Figure 5. Majority of write mir-
roring can be done within a half of a second. Our
measurement show that about 74.4% of mirroring can
be done within one half of a second for financial-1 and
about 90% of mirroring can be done within one half
of a second for Financial-2. In order word, using the
iSCSI protocol with our DCD architecture, one can
mirror their business data on transaction-basis to a dif-
ferent town through a very inexpensive Internet con-
nection (less than $100 per month). Mirrored data are
safe within 6 seconds in the worst case and over 90%
of data can be mirrored safely within half of a second
if the transaction rate is as intensive as the Financial-
2 trace. For TPC-C traces, we are still experiencing
skipped requests of about 1.5% because of high traf-
fic intensity. The response times for TPC-C shown in
Figure 6(c) have about 98.5% of write operations of
the entire trace.

During our WAN experiments, we also noticed that
measured data varies from time to time because of dif-
ferent levels of network contentions. For example, re-
sults of daytime measurements may differ from night
time and similarly weekdays from weekends.
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Figure 4. Response time for different mirroring schemes in LAN.
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Figure 5. Response time plot of Financial-1 and Financial-2 traces over WAN.

Figure 6. Response time with write coalescing (batch size=8 consecutive writes) over WAN.
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4. Related Work

Remote mirroring is not new for data protection
and disaster recovery [18]. Companies such as IBM,
EMC, Veritas, Computer Associates, and Network
Appliance Inc, etc., all provide their own proprietary
solutions [19][20][21][22][23]. A good summary of
various remote mirroring approaches can be found in
[1] including a new asynchronous remote mirroring
protocol called Seneca. Myriad [24] uses cross-site
checksums instead of direct replication to achieve the
same level of disaster tolerance as a typical single
mirrored solution requiring less resources. Venti [25]
uses a unique hash of a block’s contents to act as the
block identifier for read and write operations. Thus it
enforces a write once policy and can act as a building
block for constructing a variety of storage applications
with backup and snapshot characteristics.

iSCSI [2] is an emerging IETF standard [3] to pro-
vide a mapping for the block level SCSI commands
and data over existing TCP/IP networks. Such a tech-
nology is supposed to provide a cost-effective alterna-
tive to build low cost SAN systems. Meth and Satran
[26] discussed some strategies they adopted when de-
signing the iSCSI protocol. Many research works
[5][6][7] concentrated on iSCSI performance evalu-
ation in various hardware environments. Most of the
WAN performance evaluations are carried out in em-
ulated WAN environments instead of a realistic WAN.
Nishan systems (now McData) and other vendors car-
ried out a “Promontory Project” [27] to demonstrate
the feasibility of iSCSI in long distance transmis-
sion with high speed WAN FC links. Tomonori and
Masanori proposed optimization techniques in soft-
ware iSCSI implementations [28]. A novel cache
strategy was proposed to improve the iSCSI perfor-
mance [4]. It was also proposed to use iSCSI for dis-
tributed RAID systems [29]. Many iSCSI software
and hardware implementations and products are al-
ready available [10][30].

5. Summary and Conclusions

We have carried out measurement experiments to
study the viability of using the iSCSI protocol for re-
mote data mirroring for failure tolerance and disaster
recovery. To enhance the performance of the iSCSI

protocol, a new storage architecture called DCD is in-
corporated in the iSCSI target software. Measured re-
sults show that the DCD-enhanced iSCSI target stor-
age provides smoother and better performance than
local disk mirroring in a LAN environment. Exper-
iments on a real commercial WAN show that response
times fluctuate and can be very large. Still, data can be
mirrored safely at a remote town within a second on
average for typical online transaction processing such
as Financial-1 and Financial-2 over an inexpensive In-
ternet connection. Our experiments suggest that write
coalescing on the initiator side can help in reducing
network traffic. Our experience also indicates that
measuring performance over a realistic WAN is quite
different from an emulated WAN in a laboratory that
is more controllable.
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Abstract    

iSCSI is becoming an important protocol to enable remote storage access through the 
ubiquitous TCP/IP network. Due to the significant shift in its transport mechanism, 
iSCSI-based storage system may possess different performance characteristics from the 
traditional storage system. Simulation offers a flexible way to study the iSCSI-based 
storage system. In this paper, we present a simulation work of iSCSI-based storage 
system based on ns2. The storage system consists of an iSCSI gateway with multiple 
targets, a number of storage devices that are connected to the storage router through 
FC-AL and clients, which access the target through iSCSI protocol. We present the 
system model, the implementation of the components, the validation of the model and 
performance evaluation based on the model. Coupled with the rich TCP/IP support from 
ns2, the simulation components can be effortlessly used for the performance and 
alternatives study of iSCSI-based storage systems, applications in broad configurations. 

1. Introduction 
The iSCSI protocol [1][2] has emerged as a transport for carrying SCSI block-level 
access protocol over the ubiquitous TCP protocol. It enables a client’s block-level access 
to remote storage data over an existing IP infrastructure. This can potentially reduce the 
cost of storage system greatly, and facilitate the remote backup, mirroring applications, 
etc. Due to the ubiquity and maturity of TCP/IP networks, iSCSI has gained a lot of 
momentum since its inception.  
On the other hand, the iSCSI-based storage is quite different from a traditional one. A 
traditional storage system is often physically restricted to a limited environment, e.g. in a 
data center. It also adopts a transport protocol specially tailored to this environment, e.g. 
parallel SCSI bus, Fibre Channel, etc. These characteristics make the storage system tend 
to be more robust, and achieve more predictable performance. It is much easier to 
estimate the performance and potential bottleneck by observing the workload. While in 
an iSCSI storage, the transport is no longer restricted to a small area. The initiator and the 
target can be far apart. The networking technology in between can be diverse and 
heterogeneous, e.g. ATM, Optical DWDM, Ethernet, Wireless, satellite, etc. The network 
condition can be congested and dynamically changing. Packets may experience long 
delay or even loss and retransmission, etc. Thus, the situation facing the iSCSI storage is 
quite different from the traditional one. 
To take advantage of iSCSI protocol to build iSCSI storage systems, we need to better 
understand the iSCSI characteristics, e.g. the performance characteristics in various 
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networking situations, the impact of network transmission error or network component 
fault to the storage access performance and robustness, the relationship between iSCSI 
and underlying TCP/IP protocol, etc.  
The common way to study the performance characteristics about the iSCSI storage 
system is through the real performance measurement. Real measurement can be pretty 
accurate. Papers [4][5][6] represent this endeavor. However, the measurement approach 
is often restricted to the physical equipments and settings. In a lot of times, the software 
or hardware of the equipment is not open.  Thus a tester cannot adjust parameters, or try 
an alternative algorithm, etc. in the performance study. In this regard, a simulation 
approach offers much more flexibility. Once the simulation components have been 
implemented, it is very easy to construct test configuration, configure parameters of 
interest, or add an alternative algorithm, etc. to study the iSCSI related issues.
To our best knowledge, no simulation model has been built for iSCSI protocol. Our goal 
of this work is to establish a simulation model for iSCSI-based storage system for the 
study of the characteristics of iSCSI-based storage system. In addition, we also study the 
interactions between the iSCSI and TCP layer to better support the iSCSI access. 
We use network simulator NS2 [9] to implement the iSCSI simulation model. NS2 is an 
event driven simulator widely used in the research of networking arena. It provides 
substantial support for the simulation of TCP/UDP, routing, and multicast protocols over 
wired and wireless networks. To validate the simulated model, we also conduct the real 
performance measurement and compared the simulation results with the real performance 
data. In addition, we also examine the different TCP parameters and investigate how they 
affect the iSCSI performance based on the simulation model.  
This paper is organized as follows: Section 2 presents the simulation model for the 
iSCSI-based storage system. Section 3 describes the iSCSI implementation in NS2. 
Section 4 presents empirical validation of the model. In Section 5, we analyze the 
performance results of iSCSI model. Section 6 reviews the related work. Finally we 
conclude this paper in Section 7. 

2. Simulation Model 

2.1. A Typical iSCSI Storage System Model 
Figure 1 shows a typical iSCSI-based storage system model used in the simulation. In 
this model, an initiator generates SCSI requests, which is encapsulated into iSCSI 
messages (protocol data unit or PDU). These PDUs are then transmitted over TCP/IP 
network and routed to an iSCSI storage gateway.  

Storage Gateway

TCP/IP

iSCSI

FC

Initiator

TCP/IP

iSCSI
TCP/IP
Network

FCP

FC-AL
SAN

Figure 1 The storage system model 
The storage gateway has both TCP/IP networking interface and FC-AL interface. TCP/IP 
interface provides iSCSI connection for an initiator to access through IP network, while 
FC-AL interface is used to connect to a SAN storage subsystem. In this SAN 
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environment, the gateway serves as an initiator to the FC-enabled disks. It uses the SCSI 
over FC encapsulation protocol (FCP) to access the disk devices through Fibre Channel.  

2.2. The iSCSI Data Transfer Model 
Figure 2 shows the iSCSI architecture model. iSCSI builds on top of TCP transport layer. 
For an iSCSI initiator to communicate with a target, they need to establish a session 
between them. Within a session, one or multiple TCP connections are established. The 
data and commands exchange occurs within the context of the session. 
Figure 3 shows iSCSI command execution by illustrating a typical Write command. The 
execution consists of three phases: Command, Data and Status response. In the Command 
phase, The SCSI command (in the form of Command Descriptor Block (CDB)) is 
incorporated in an iSCSI command PDU. The CDB describes the operation and 
associated parameters, e.g. the logical block address (LBA) and the length of the 
requested data. The length of the data is bounded by a negotiable parameter 
“MaxBurstLength”. During the Data phase, the data PDUs are transmitted from an 
initiator to a target. Normally, the initiator needs to wait for “Ready to Receive (R2T)” 
message before it can send out data (solicited data). However, both initiator and target 
can negotiate a parameter “FirstBurstLength” to speed up the data transmission without 
waiting. FirstBurstLength is used to govern how much data (unsolicited data) can be sent 
to the target without receiving “Ready to Receive (R2T)”. A R2T PDU specifies the 
offset and length of the expected data. To further speed up the data transfer, one data 
PDU can be embedded in the command PDU if “ImmediateData” parameter is enabled 
during the parameter negotiation. This should be very beneficial for small write 
operation. The Status PDU is returned once the command is finished. 

Application Logical UnitDisk I/O requests

SCSI
Initiator

SCSI Target

Application
layer

SCSI layer

iSCSI
protocol

layer

TCP/IP

Ethernet

iSCSI
protocol
entity

TCP/IP

Data link

iSCSI
protocol
entity

TCP/IP

Data link

Block data

SCSI CDB

iSCSI PDU

TCP segment
IP packet

Ethernet
frame

Ethernet

TCP/IP

iSCSI

SCSI

Session
iSCSI transport

Physical media

iSCSI Write CMD (CDB)

R2T

iSCSI Response

iSCSI Data-out PDU

R2T
R2T

iSCSI Data-out PDU
iSCSI Data-out PDU

Initiator Target

Figure 2. The iSCSI model Figure 3. The command execution sequence 

 Finally, these messages are encapsulated into TCP/IP packets, where the packet size is 
bounded by MSS (maximum segment size) in TCP. MSS is determined by the smallest 
frame size along the path to the destination. Within an Ethernet LAN, the maximum 
frame size is 1500 bytes (Gigabit Ethernet supports Jumbo frame). The MSS is 1460 
bytes (40 bytes for IP and TCP header). When the iSCSI PDU size is greater than the 
segment size, the PDU is further fragmented into smaller packets.  
The size of iSCSI parameters like: MaxBurstLength, FirstBurstLength and PDU size all 
have certain impact to the iSCSI performance. However, the iSCSI performance is also 
significantly affected by the underlying TCP flow control, congestion control mechanism. 
We will also examine the effect of these parameters. 
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2.3. Disk Model 
We use Seagate ST39102FC Cheetah 9LP disk as the storage device. The disk access 
time Td = Tds+Tdr+Tdt, where Tds is the disk seek time, which is determined by the 
difference of current cylinder and the target cylinder; Tdr is the disk rotation latency, 
which is determined by the difference of the current sector when the disk head moves to 
the target cylinder and the first sector of the intended access. Disk transfer time Tdt is 
determined by the number of data blocks transferred. When the data size is large, the 
requested data may span more than 1 track (cross disk surface) or even 1 cylinder. In that 
case, we also add the head switch or cylinder switch time into the access time. We 
consider the disk has enough buffers to hold the requested data.  
The disk not only handles the block data access, it also handles the data transmission. The 
disk has built-in FC-AL logic and interface. As a normal FC node, it has a physical 
address and needs to participate the arbitration phase to win the channel before 
transferring data between the gateway and the disk.   

2.4. FC-AL Interconnect 
Fibre Channel is a popular networking protocol to construct storage area network. It 
supports switching fabric, loop and point-point construct. FC-AL aims at loop topology 
where up to 126 FC-AL nodes (hosts and disk devices) are connected to a shared loop. A 
node obtains the access to the loop through arbitration. The arbitration is determined by 
the physical addresses of participating nodes. When a node wins arbitration, it opens a 
connection to its destination node. A node closes a connection and releases the control 
over a loop when its transfer has finished. In our environment, the disk devices and 
storage gateways are FC-AL nodes. 
On top of the Fibre Channel transport, similar to iSCSI, FCP protocol maps SCSI 
protocol onto the Fibre Channel protocol. Each SCSI protocol is also performed through 
three phases, FCP-CMD frame for command transfer, FC-Data frame for data transfer, 
and FCP-response frame for status transfer. Since the maximum frame size is 2048bytes, 
a SCSI command may require multiple FCP-Data frames to transfer all requested data. 
For the SCSI Write operation, FCP-XFER-Ready frame is also used for the flow control 
between the initiator and disk device. 
The speed of FC-AL can be 1Gb/s, up to 2 Gb/s. Since it adopts 8B/10B encoding, the 
actual bandwidth is 100MB/s (Mega bytes per second) and 200MB/s respectively. In our 
simulation, we assume the speed to be 1Gb/s. We use a central module FC to handle the 
channel arbitration. All participating nodes (disk devices, the gateway) are required to 
register to this module. When a node requires channel, it submits a request to FC. FC 
module determines who wins the arbitration.  

2.5. Storage Gateway Model 
The storage gateway works as a bridge between two protocols: iSCSI and FCP. It hosts 
the targets of the iSCSI and the initiators of the FC storage. In the meantime, it manages 
the targets, their access control and their related sessions. It also administers the mapping 
between a target and its constituent disk devices.  
In the simulation, the disk devices should be “attached to” (add an pointer in) a target. 
Each target maintains two interfaces: iSCSI on top of TCP agent and the FCP on top of 
Fibre Channel interface. An outstanding command queue for the each session glues these 



two interfaces together. Each command item in the queue contains the CDB and other 
status information. When a new command arrives from iSCSI interface, it is placed into 
the command queue. The command is further sent to the disk device through the FCP 
interface when the number of outstanding commands falls below the threshold in the 
target disk. When a command completes, it receives an FCP-RSP frame from the disk. 
Upon receiving this frame, the target sends out an iSCSI Response PDU to the actual 
initiator, in the mean time, the command is removed from the queue. However, the 
commands within a session are completed in order. 

3. Simulating iSCSI in NS2 

3.1. iSCSI Nodes 
In our simulation there are three types of nodes: Initiator, Target and gateway node. 
Figure 4 shows these nodes and their related components. A target node is the peer of an 
initiator node. The gateway node hosts one or multiple target nodes. 
iSCSIInitiator and iSCSITarget are the node applications running on the initiator and 
target respectively. Within these nodes, iSCSIInitiatorSession and iSCSITargetSession, 
derived from iSCSISession, perform the session tasks. Similarly, 
iSCSIInitiatorConnection and iSCSITargetConnection, derived from iSCSIConnection, 
perform connection tasks. A iSCSISession can open multiple iSCSIConnections.  
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 Figure 4. Hierarchy of iSCSI Node    Figure 5 Queuing models (a) Initiator  (b) Target 

Each iSCSIConnection has its own iSCSITcpApp object through which data is sent and 
received. We use FullTCP agent for the iSCSIConnection application. 

3.2. Queuing Models 
Figure 5 shows the queuing models in the simulation. Fig. 5(a) is the model for an 
initiator. It has an input queue to receive workload (SCSI requests). Under the input 
queue are several Session queues. Each session possesses a queue for the outstanding 
SCSI commands. The maximum number of outstanding commands is configurable. The 
commands in each session are processed by their corresponding connections and then 
passed to their TCP agents. The link queue at the bottom is the network node’s link 
queue. 

403



Fig. 5(b) shows the Target’s queuing model. Four types of queues exist: session queue, 
link queue, disk queue and FC queue. Similar to the Initiator node, link queue is for the 
Ethernet link. Per-session queue is for outstanding commands. Each disk has a disk 
queue, which holds outstanding commands for each disk in the target. Disk queue makes 
the interaction between the target and disk simpler. FC queue holds the requests to access 
the FC link. Moreover, each disk itself also has a command queue. The number of 
outstanding commands is configurable. 

3.3. Implementation 
Figure 6 shows a typical setting of an iSCSI system implemented in NS2.  The system 
comprises three parts: the initiator, which generates workload; the TCP/IP network, 
which can be easily configured based on existing NS2 components; and the gateway in 
conjunction with target disk devices.  
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FullTcp Agent 
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Connection-1 
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Connection-1 
Target-1, Session-1

Connection-1  

Disks

Network

Initiator

Figure 6. iSCSI system based on NS2 
All these components are implemented in C++ to achieve high efficiency. The Otcl script 
in NS2 is used to setup the simulation environment. It creates network nodes and network 
topology, creates initiator and gateway nodes, creates targets and disks and attaches disks 
to target. These C++ components also expose a number of configurable parameters such 
as iSCSI parameters, disk parameters, to the Otcl. This makes the change of test setting 
very convenient. 
After the test setting is constructed, the script then invokes login method in the initiator to 
connect to the gateway. The initiator enters Login phase. Eventually it acquires the 
targets and LUNs in the target from the gateway. The initiator finally creates a session 
with each target. The number of sessions and the number of connections in a session are 
also configurable parameters. The SCSI Read or Write requests (workload) are then 
passed to the initiator to carry out. 
The workload for the each test is generated in a separate Otcl script. We have developed 
a workload generator program that generates requests of even distribution and Poisson 
distribution. The disk id is also evenly distributed among the specified range of disks. In 
addition, we also apply the trace file to the initiator to see how the actual application data 
affect the performance. 
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4. Empirical Validation 
To verify the simulation model, we compare it with iSCSI performance measurement 
data obtained from a real iSCSI setting. In this real setup, Initiator communicates with a 
Cisco SN5420 iSCSI gateway through campus network. The network connection is the 
100Mb/s Ethernet. There are 4 Seagate 39102FC disks are accessed. The round trip time 
in terms of network distance is approximately 2ms. 
The test involves reading and writing a burst data of sizes from 1K, 4K, 16K to 64K 
bytes under light load and heavy load with a PDU size of 8KB.  
1) A comparison of the real iSCSI access latency and NS modeled iSCSI access latency 
is shown in Figure 7. Both the light load (Each time only one thread is sending data 
request) and heavy load (4 threads is sending requests) are tested. The delay patterns for 
both figures shown above are approximately similar and follow the similar rate of 
increase.  With small data burst size, the difference is within 2%, for the data burst size of 
64K, the difference is within 6%. 
2) In another test, the burst sizes vary from 4K to 64K under heavy load conditions. 
Figure 8 shows close approximation in throughput. The NS model provided a little higher 
throughput because of ideal environment conditions. 
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The results from the test provide reasonable assurance that the NS model can closely 
approximate a real iSCSI installation. To support the validity of model more thorough 
analysis can be done with different test scenarios.  

5. Performance Analysis 
In this section, we present the results of the effect of iSCSI parameters in iSCSI layer and 
TCP parameters in TCP layer to iSCSI data access performance.  

5.1. The Effect of the iSCSI Parameters  
We first examine the effect of different iSCSI PDU sizes. Figure 9 shows the read 
throughput with varying PDU sizes. The parameters involved in this simulation include 
data PDU sizes from 0.5KB to 8KB and max burst sizes from 1KB to 4MB. It is found 
out that at larger burst data size, the PDU size makes difference. For a large burst size, 
e.g. 1MB, with the PDU size of 8K, there will be 128 PDUs, while with PDU size of 1K, 
then there will be 1024 PDUs. More PDUs cause more R2T messages, and potentially 
more waiting for the R2T signals. From the figure, we observe the better performance for 
larger PDU size as data size increases.   
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5.2.  The Effect of Network Parameters  
 In this subsection, we investigate how the network parameters like TCP window size, 
MSS (Maximum Segment Size) and link delays affect the iSCSI performance.
We first examine the effect of MSS size. In the test setting, the TCP window assumes the 
default value of 20. The link is a Gigabit Ethernet with delay from 10us to 50ms. The 
MSS sizes are 296B, 576B and 1500 bytes respectively.  Figure 10 shows the achieved 
throughput with varying MSS sizes. 
Normally, for a given delay and MSS size, the maximum throughput that can be achieved 
is approximately one window per round trip time, i.e. (MSS * window)/2*delay, which 
implies that throughput is inversely proportional to the link delay for the given MSS. 
This figure shows that the throughput decreases quickly for smaller MSS sizes, whereas 
higher MSSs show a gradual decrease even for higher link delays. For link delays less 
than 1ms, the MSS size does not have much effect on the throughput this is because at 
short network link delay, bandwidth-delay product is small. The acknowledgement comes 
back very fast. As the link latency continues to increase, the throughput drops gradually, 
thus the link utilization is also getting lower. We need more parallelism to take advantage 
of the link bandwidth. The use of multiple connections may help. Adding more disks will 
increase the disk I/O bandwidth. The RAID system may also increase the disk access 
performance. 
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Throughput vs. TCP Window size
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       Fig. 10 Throughput vs. MSS size      Fig. 11 Throughput vs. Window size 

We then examine how the TCP window variation affects the throughput. Three different 
TCP window sizes (20, 40 and 80) are used. The MSS size is fixed at 296B as shown in 
the Figure 11. The result shows that the throughput increases with the increase of TCP 
window. At the short network link latency (e.g. LAN environment) of 0.4ms, the 
throughput is about 4MB/s for window size 20, but when the window size increases to 
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80, the throughput reaches to 6.8MB/s. However, with the increase of network latency 
(long fat network), the window size is too small, and the throughput reduces significantly.

6. Related Work 
There have been several simulation work related to disk and storage subsystem. Paper [7] 
gave an introduction about the disk drive modeling and simulation.  It described the 
principle of a disk drive and present a formula to compute disk seek time. Project 
DiskSim [8] provides an open source code, which can extract the disk parameters of 
different disk drives. We benefit a lot from their work in the disk simulation. Paper [10] 
modeled a disk controller and studied some more advanced features like caching. In 
paper [11], a Storage Area Network (SAN) is simulated. In this SAN, Myrinet is used to 
connect the storage devices and servers (initiators).  
On the other hand, iSCSI protocol represents a different SAN paradigm, i.e. it uses the 
ubiquitous TCP protocol as the SCSI command and data transport. There are several 
studies in iSCSI performance and characteristics. Papers [4][5][6] presented the iSCSI 
performance measurement and evaluation under different scenarios. However, due to the 
diversity of network configuration and the impact of the underlying TCP network, it is 
crucial to build up the simulation model for the iSCSI environment for the iSCSI-related 
research. Our work incorporates the rich feature of ns2 in supporting the TCP/IP 
networking, and implements all related components including disk model, iSCSI 
protocol, FC-AL protocol and iSCSI target. This can be used to easily construct a flexible 
iSCSI-based storage system to facilitate the iSCSI related research. 

7. Conclusion 
We have presented a simulation model for the iSCSI-based storage system. The model 
includes all components for constructing an iSCSI-based storage system. In order to meet 
the requirements of extensibility and flexibility, we make the components modular and 
generic. The whole system is composed into several components. These components can 
be easily replaced or extended.  
In order to validate the implementation, we also conducted real measurement and 
compared the simulation results with the real measurement results under the same 
settings. It turns out that the performance results in our model are close to that of real 
measurement. 
With the simulation model, we further conducted the performance characteristics study to 
examine how the iSCSI parameters and the underlying TCP parameters affect the iSCSI 
performance. Our results show that with larger burst data size, the larger PDU size will 
help the throughput. Increasing TCP window size and MSS also affects the end-to-end 
performance. But this effect is more pronounced for higher link delays.  
In the future, we’ll further study the iSCSI storage system in a diverse network such as 
fat network (long latency, high bandwidth), wireless network, we’ll also examine the 
impact of the underlying TCP protocol on the upper-level SCSI access in terms of 
performance and resilience based on the simulation model.   
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Abstract 

We identify the tunable parameters of 

iSCSI and TCP that affect the 

performance characteristics for local, 

metropolitan, and wide area networks.  

Through measurements, we determine 

the effect of these parameters on the 

throughput.  We conclude that with the 

appropriate tuning of those parameters, 

iSCSI and TCP protocols maintain a 

good level of throughput for all types of 

networks.   

1. Introduction 

iSCSI [1] is a promising new 

technology, which overcomes the 

distance limitations of other storage 

networking technologies such as Fibre 

Channel and Infiniband, and thereby 

enables globally distributed mass storage 

systems.  Wide Area Ethernet services, 

at the same time are emerging as a 

strong contender for wide area 

connectivity among multiple enterprise 

locations.  While some studies exist on 

the performance characteristics of the 

iSCSI protocol [2] [3], the performance 

characteristics for metropolitan area and 

wide area networks are yet to be 

understood.  The iSCSI protocol and the 

underlying TCP/IP and Ethernet 

protocols have some configurable 

parameters which impact performance.  

In this paper, we investigate the effect of 

some of these parameters on iSCSI 

throughput. 

2. Parameters 

At the iSCSI level, the parameters of 

interest from a performance point of 

view are: (i) command request size, (ii) 

iSCSI command window credit amount, 

(iii) the number of simultaneous iSCSI 

connections in a session, and (iv) the 
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option of sending solicited vs. 

unsolicited data.  The command request 

size, the command window credit 

amount, and the number of simultaneous 

connections may impact both read and 

write performance.  The choice of 

solicited vs. unsolicited data may impact 

write performance, but it has no impact 

on reads.   

At the TCP/IP level, the most important 

parameters are the send and receive 

window sizes especially in networks 

with a large bandwidth-delay product 

such as high speed WANs. 

The iSCSI command request size is the 

amount of data that is sent or received as 

part of a SCSI command encapsulated in 

iSCSI.  The iSCSI command window 

credit amount, dynamically set by the 

target, determines the maximum number 

of iSCSI commands that can be 

outstanding at a given time.  The product 

of these two parameters will determine 

the maximum amount of data that can be 

pipelined in the network to deal with the 

network latency. Increasing this amount 

will generally improve throughput.   

The primary reason for iSCSI to support 

multiple connections per session is to 

take advantage of trunking in Gigabit 

LAN switches [4]; each TCP connection 

may utilize a different link, thus 

improving the overall throughput of the 

session.  However, even on a WAN or 

MAN link where only a single path is 

available between an initiator and a 

target, the number of simultaneous 

connections in an iSCSI session may 

impact the performance due to the 

behavior of the TCP protocol where each 

TCP connection adjusts its transfer rate 

so as to share fairly a congested path.  

By allowing multiple connections per 

iSCSI session, the iSCSI traffic is 

effectively given priority over other TCP 

traffic.  Furthermore, a packet loss in a 

TCP connection triggers the TCP slow-

start and congestion avoidance 

algorithms, resulting in a drop in the 

throughput which takes some time to 

reach back to the maximum possible 

level [5].  By using multiple connections 

in a session, the overall impact of this 

temporary drop in throughput is reduced. 

On the other hand, the iSCSI protocol 

has to obey the SCSI command ordering 

rules that may reduce the parallelism 

among multiple connections. 

As far as solicited vs. unsolicited data 

transfer is concerned, three independent 

parameters determine the transfer type:  

FirstBurstLength, MaxBurstLength, and 

MaxRecvDataSegmentLength [1].  

FirstBurstLength determines the 

maximum amount of unsolicited data 

that the initiator can send per command.  

MaxBurstLength determines the 

maximum amount of solicited data that 

the initiator can send per command.   

MaxRecvDataSegmentLength is the 

maximum data segment size that can be 

sent in each protocol data unit (PDU).  

There are many ways that these 3 

parameters can be set.  In this study, we 

consider two cases which produce results 

in the two extremes: most-unsolicited 

and most-solicited data allowed by the 

iSCSI protocol.  Most-unsolicited data 

implies that the FirstBurstLength is 

greater than or equal to the maximum 

write command request size that the 

initiator generates.  Most-solicited data 

implies that the unsolicited data mode is 

disabled during the login negotiation, 

effectively equivalent to setting the 

FirstBurstLength to zero.  In this mode, 

the target will notify the initiator when it 

is ready to receive data for a given 

command. This will give the target more 

control in the receive buffer allocation, 

but it will introduce extra round trip 
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delays as compared to the fully 

unsolicited mode.   

3. Experimental Setup 

In this paper, we study the effect of the 

aforementioned parameters on iSCSI 

performance for different network types 

between the initiators and the targets. 

Note however that we did not study 

scenarios with multiple TCP connections 

per iSCSI session because targets and 

initiators that support this feature are not 

yet widely available. In addition, the test 

configurations we study do not have 

multiple paths.   

In order to isolate the effect of the 

network latency and not to be affected 

by the idiosyncrasies of different 

commercial products, we used a 

WAN/MAN emulator. This allowed us 

to vary the network latency while 

keeping all other parameters unchanged. 

More specifically, our experimental 

setup consisted of an open source 

software initiator by Cisco running on a 

933 MHz two processor Intel Pentium 

III SMP machine, and an Intransa 

IP5000 iSCSI target, interconnected by a 

LANforge ICE WAN emulator by 

Candela Technologies.  As traffic 

generators, we used two open source 

tools, xdd for block IO and ettcp for tcp 

traffic.  

In our experiments, we set the network 

bandwidth to the OC3 rate, 155Mb/s. 

This rate is the maximum supported by 

the WAN emulator. Since this paper’s 

focus is network performance, we 

configured the IP5000 in write-back 

mode and we set the traffic patterns such 

that all reads are served from the cache. 

This allowed us to eliminate any 

possible disk IO bottleneck.      

We studied four values of round trip 

latency: 0 ms as baseline, 2 ms for MAN 

and 10 and 50 ms for WAN. In addition, 

we performed some LAN measurements 

by using a Gigabit Ethernet connection 

between the initiator and target, without 

the LANforge.   

4. Results 

4.1 Effect of the TCP Window Size 

We first studied the effects of TCP 

window size setting. By using the 

default 64KB settings of the Linux 

kernel 2.4.19, we obtained the results 

shown in Table 1. The first row 

corresponds to data being sent from the 

iSCSI initiator machine to the target, and 

the second row corresponds to the data 

sent in the other direction.  As can be 

seen, even at the small values of round 

trip latency, the default TCP window 

size settings are inadequate to maintain a 

good level of throughput. We then 

increased the maximum send and receive 

window sizes to 10 MBytes for both the 

initiator and the target, and achieved the 

wire speed for all the latency values 

under consideration as shown in Table 2. 

In the remainder of this paper, we kept 

the maximum window sizes at 10 

MBytes. 

Table 1: TCP throughput results in MBytes/s 

with default TCP send and receive window 

sizes (64KB) 

Round Trip Latency Transfer 

Direction 0 ms 2 ms 10 ms 50 ms 

I  T 19.0 18.7 4.4 0.9 

T  I 19.0 13.5 3.2 0.7 

 

Table 2: TCP Throughput results in MBytes/s 

with maximum TCP send and receive window 

sizes set to 10 MBytes 

Round Trip Latency Transfer 

Direction 0 ms 2 ms 10 ms 50 ms 

I  T 19.3 19.3 19.3 19.3 

T  I 19.3 19.3 19.3 19.3 
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4.2 Effect of the iSCSI Parameters Table 5: iSCSI throughput results in MBytes/s 

for reads 

After eliminating the TCP bottleneck, 

we studied the effect of the iSCSI 

parameters. Table 3 presents the iSCSI 

throughput results for most solicited 

writes using different iSCSI command 

window and request sizes. It is clear that 

the throughput is adversely affected 

when the product of window and request 

size is small.  

Round Trip Latency Request 

Size 

Window 

Size 0ms 2ms 10ms 50ms 

1 2.3 0.4 0.1 0.02 1KB 

32 17.6 8.0 2.3 0.5 

1 10.2 3.1 0.8 0.2 8KB 

32 19.2 19.2 19.1 4.7 

1 19.2 17.2 5.4 1.2 64KB 

32 19.2 19.3 19.3 19.2 

1 19.2 19.2 18.3 4.7 256KB 

32 19.3 19.3 19.3 19.3 

  

Table 4 shows similar results to Table 3, 

but for most unsolicited writes.  Clearly, 

the elimination of the extra round trip 

delays help to improve the throughput. 

Table 5 shows similar results for read 

requests.  Considering that both the read 

requests and the unsolicited write 

requests involve one round trip latency 

per request, the results in Table 5 match 

the results in Table 4 in many cases.  

However, for some other cases, read 

throughput seems to significantly exceed 

the most unsolicited write throughput.   

 

Table 3: iSCSI throughput results in MBytes/s 

for most solicited writes 

Round Trip Latency Request 

Size 

Window 

Size 0ms 2ms 10ms 50ms 

1 1.3 0.2 0.05 0.01 1KB 

32 11.3 3.3 0.8 0.2 

1 7.7 1.7 0.4 0.08 8KB 

32 19.0 18.9 5.8 1.2 

1 19.2 10.9 2.9 0.6 64KB 

32 19.2 19.3 19.3 4.5 

1 19.2 19.2 7.8 1.7 256KB 

32 19.3 19.3 19.3 4.7 

Finally, our LAN measurement results 

are shown in Table 6 for writes and 

reads, using various iSCSI command 

window and request sizes.  It is 

interesting to note that even in a low 

latency LAN environment, the product 

of the iSCSI window size and request 

size impacts the performance 

significantly.  In addition, the unsolicited 

writes provide a significant increase in 

performance. 

 

Table 4: iSCSI throughput results in MBytes/s 

for most unsolicited writes 

Round Trip Latency Request 

Size 

Window 

Size 0ms 2ms 10ms 50ms 

1 2.2 0.4 0.09 0.02 1KB 

32 17.4 6.6 1.5 0.3 

1 10.3 3.2 0.7 0.2 8KB 

32 19.2 19.2 11.6 2.5 

1 19.3 17.6 5.4 1.2 64KB 

32 19.3 19.3 19.3 4.8 

1 19.3 19.3 11.6 2.5 256KB 

32 19.3 19.3 19.3 4.9 

Table 6: iSCSI throughput results in MBytes/s 

in Gb/s LAN environment 

Request 

Size 

Window

Size 

 Most 

Solicited 

Writes 

Most 

Unsol. 

Writes 

Reads 

1 3.4 5.5 5.4 1KB 

32 17.1 23.4 19.9 

1 17.4 25.0 22.5 8KB 

32 68.6 84.3 72.3 

1 56.1 65.9 61.3 64KB 

32 96.5 99.8 91.9 

1 71.3 79.9 74.7 256KB 

32 97.3 100.4 98.4 
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5. Conclusions 

We have observed that the default TCP 

parameter values are inadequate for the 

high speed MAN and WAN 

environments, and therefore require 

tuning.  We have seen that the product of 

the iSCSI command window and request 

sizes has a very significant effect on the 

performance as well.  Furthermore, using 

the most solicited writes has a major 

performance penalty, and should be 

avoided whenever possible.  With 

appropriate performance tuning, the 

iSCSI and TCP protocols are capable of 

achieving good throughput in all types of 

networks. 
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1 Introduction 

Traditionally, systems for large-scale data storage have been based on removable media 
such as tape and, more recently, optical disk (CD, DVD). While the need for increased 
storage capacity has never been greater, the inadequacies of traditional approaches have 
never been more apparent. This is especially true for fixed-content data: new government 
regulations and increasingly competitive market pressures have converged to underscore 
the importance of finding long-term storage solutions for fixed-content data that offer 
ready and secure access, easily scale, and are relatively inexpensive. 

1.1 Shortcomings of removable media archives 

Archives that rely exclusively on removable media share the following shortcomings: 

An archive system that commits physical data to removable media is also captive to the 
specific hardware system that enables read/write access.. As technology changes, these 
systems inevitably tend towards obsolescence. It is questionable whether the devices 
that are used today to read tape or disk will still be available and viable years hence—
never mind the availability and viability of the vendor itself! 

As the archive grows, access becomes increasingly cumbersome and time-consuming. 
Data is not always readily available when it is wanted. Moreover, the administrative 
overhead that is required to provide timely access is unacceptably high, and—for many 
organizations—prohibitively expensive. 

Government regulations reflect a rising demand to maintain large amounts of data over 
long periods of time, and to guarantee their authenticity. Removable data is especially 
vulnerable to physical mishandling and corruption, both through physical deterioration 
and outside intervention, whether inadvertent or deliberate. 

1.2 An alternative model 

In general, when digital data is bound to tape or disk, it ceases to be a digital asset; 
instead, it becomes simply a physical widget that contains bits, with all the drawbacks 
previously cited. Long-term mass storage of fixed-content data requires a new type of 
storage model, where the data's physical location is completely separate from its logical 
representation. In order to achieve this objective, digital data must be stored in a digital 
archive that is scalable, reliable, and highly available. 
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Today's best hope of realizing this model rests in a network—or cluster—of inexpensive 
servers such as IA-compatible machines that can run a full Linux distribution. This model 
offers the following advantages: 

Various protection schemes (RAID-5, RAID N+K) safeguard files from multiple, 
simultaneous points of failure in the network, and guarantee that their data remains 
continuously available. 

Within the network, the archive system autonomously enforces policies that are 
associated with the stored files. These policies include retention period, file protection, 
and content authentication. 

Gateways for standard protocols (HTTP, NFS, SAMBA, CIFS) provide over-the-wire 
access to the archive. 

The archive is easily extended: as new nodes enter the cluster, the archive automatically 
invokes its own load-balancing and protection policies, and redistributes existing 
storage into the new space accordingly. 

A network-based archive can facilitate updates to files so they stay current with the 
latest applications—for example, format changes that are required by new end-user 
applications. Data migration of this type, on the scale required for large archives, is 
virtually impossible to achieve in tape-based systems. 

The data's actual location on the network is transparent to the user. During its lifetime in 
an archive, a stored file might be relocated across many network machines—or nodes—
as the result of hardware upgrades, replacements, or load balancing. The reference to the 
file, however, remains constant, enabling users ready access to its contents without 
requiring knowledge of its physical location within the cluster. 

1.3 Two architectures for online archives: RAIN and H-RAIN 

In the last several years, various vendors have come forward with archive systems that 
implement the network approach just described. These all embody various 
implementations of RAIN (redundant array of independent nodes) architecture. RAIN 
archives are based on one or more clusters of networked server nodes. As nodes enter or 
leave the cluster, the cluster automatically adjusts by redistributing and, when necessary, 
replicating the stored files. 

Currently, RAIN archives are typically delivered as proprietary hardware appliances, 
closed systems that are built from identical components. Evolution of these systems is 
carefully controlled by the vendor. 

The architecture of H-RAIN—heterogeneous redundant arrays of independent nodes—
differs from the RAIN architecture from which it evolved by making minimal 
assumptions about the archive's underlying hardware and software. In practice, this 
means that H-RAIN architecture can be implemented with commodity hardware. This 
relatively open architecture has two advantages over its RAIN progenitor: 

416



It adapts more readily to technological advances and site-specific contingencies. 
Administrators are free to replace components with superior hardware as it becomes 
available, thus improving storage capacity, performance, and reliability. Furthermore, 
they can choose among hardware options that best suit their requirements, such as CPU, 
memory, and disk capacity. For example, a cluster might be extended by adding new 
nodes with higher-performance CPUs, which can be used for CPU-intensive filtering 
operations. Incremental hardware additions and improvements might thereby 
measurably improve overall archive performance. 

Archive administrators can start small and scale up capacity incrementally simply by 
adding nodes as they are needed. Moreover, they are free to seek the best prices for 
storage cluster components. Given that component costs tend to decrease over time, 
cost-conscious administrators can reduce their average cost per gigabyte by spreading 
out purchases. 

In general, an H-RAIN architecture enables users to upgrade their technical infrastructure 
while transparently migrating archive content to more up-to-date nodes. Improvements 
can be made incrementally, leaving the initial installation intact. As hardware prices fall, 
archive performance can be enhanced with better-performing nodes, and at lower cost. 

2 Implementing H-RAIN architecture 

Archivas' archive management system, Reference Information System (RIS), is based on 
the H-RAIN model. With RIS, organizations can create large-scale permanent storage for 
fixed content information such as satellite images, diagnostic images, check images, 
voice recording, video, and documents, with minimal administrative overhead. 

In RIS' H-RAIN implementation, two features are salient: 

Distributed processing 

Autonomous management 

2.1 Distributed processing 

All nodes in a cluster are peers, each capable of running any or all of services that an 
archive requires. A cluster can be configured so archive services are distributed in a way 
that best serves the enterprise's storage requirements. 

For example, a cluster can configured symmetrically—that is to say, each node runs the 
same processes and daemons, including a portal server, metadata manager, policy 
manager, request manager, and storage manager. Each node bears equal responsibilities 
for processing requests, storing data, and sustaining the archive's overall health. No single 
node becomes a bottleneck: all nodes are equally capable of handling requests such as put 
and get operations. Furthermore, in the event of node failure, any other node can take 
over responsibility for the data that was managed  by the failed node, so that user access 
to this data remains unaffected.  

Alternatively, a cluster might be configured so that various services are distributed 
asymmetrically across different nodes. For example, if read requests are especially heavy 
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for a given archive, several nodes might be dedicated solely to request management and 
run multiple request managers and metadata managers, in order to maximize throughput 
to other nodes that store the physical data.  

2.2 Autonomous management 

Through policies that are associated with archived files individually, and the cluster 
collectively,  the archive can manage itself without human intervention. Policies are set 
for the archive on initial configuration, and can (optionally) be set for individual files as 
they are archived. Taken together, these policies determine the archive's day-to-day 
operation. Through a policy manager that executes on each node, the archive monitors its 
own compliance with current policies, and when lapses occur, takes the appropriate 
corrective action. 

For example, in the event of a failed disk or node, the system determines what data is 
missing and how best to restore it from data on the remaining healthy nodes, so that the 
protection policy for these files is fully enforced. Similarly, the system prohibits removal 
of an archived file before its retention period has elapsed. 

Human intervention is rarely warranted, and usually only in response to system warnings 
that require outside action—for example, notification the cluster load has crossed a 
specified threshold, requiring the addition of new nodes. 

Four attributes characterize archive self-management: 

Self-configuring: Setting up large archive systems is error prone. An archive 
comprises networks, operating systems, storage management systems, and, in the case 
of RIS, databases and web servers; getting all these components to run together requires 
teams of experts with a myriad of skills. An autonomous system simplifies installation 
and integration by setting system configuration through high-level policies. 

Self-protecting: Policies that enforce document retention, content authentication, and 
file protection combine to protect an archive from loss of valuable digital assets. 

Self-healing: Serious problems with large-scale archives can sometimes take weeks to 
diagnose and fix manually. When the faulty device is finally identified, administrators 
must be able to remove and replace it without interrupting ongoing service. 
Autonomous systems can automatically detect software and hardware malfunctions in a 
node, and safely detach it from the archive. Further, because data is replicated across 
many nodes in the cluster, the failure of one or more nodes has no impact on data 
availability. Archivas' distributed metadata manager can find an alternative source for 
any data that resides on a failed node. 

Self-optimizing: Storage systems, databases, web servers and operating systems all 
have a wide range of tunable parameters that enable administrator to optimize 
performance. An autonomous system can automatically perform functions such as load 
balancing as it monitors its own operation.  
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3 Extending the H-RAIN model 

With its H-RAIN architecture, RIS is capable of integrating with storage systems that use 
removable media such as tape or optical disk. In this scenario, the tape system is seen by 
RIS as simply another set of storage nodes; the physical location of data is managed by 
an RIS storage manager implementation that is specifically targeted to tape-based 
storage. 

This capability is critical for a multi-tier storage and migration strategy, where data is 
stored in whatever medium best serves external access requirements. For example, a file 
that is frequently accessed should be archived in primary storage on a high-performance 
disk, while data that is rarely used can be stored on relatively low-performance media 
such as tape. Further, it is likely that access requirements for a given file will not remain 
constant, especially if the file is retained for a long period of time. In general, references 
to most types of data significantly decline as the data itself ages, as shown in the 
following figure:1

 

 

With the advent of government regulations such as the Sarbanes-Oxley Act, enterprises 
are required to archive increasing amounts of reference data, and retain them for ever 
longer periods of time. In order to keep storage costs down, it is increasingly important 
that archive systems respond to changing access requirements by moving data easily from 
more expensive disk-based media to less-expensive removable media.  By encompassing 
both disk-based and tape-based storage and providing a unified interface to both, RIS can 
provide a smooth migration path for aging data. Furthermore, RIS policy mangers can 
automatically manage the migration, as determined by archive-wide or file-specific 
policies. 

4 Conclusion 

A digital archive system that is based on H-RAIN architecture offers the most economical, 
scalable, and effective solution for large-scale storage of reference data. Policy-based 
management minimizes administrative overhead while it provides the most reliable way to 
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achieve an archive's most important requirements: availability, reliability, and content 
authentication.  

By extending the H-RAIN model to encompass any network node, including those that 
interface to tape-based systems, the potential exists to implement a multi-tier system where 
data is stored on the medium that best suits access requirements, and can easily be migrated to 
another  medium as those requirements change. 

                                                                          

1 Fred Moore, "Information Lifecycle Management," Horison Information Strategies (http://www.horison.com) 
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Abstract 

We present a new approach to create large-scale cost-effective mass storage systems using 

high-capacity disks. The architecture is optimized across multiple dimensions to support 

streaming and large-block data access. Because I/O requests in these applications are to a 

small fraction of data, we power-cycle drives as needed to create a very high-density storage 

system. Data protection is provided through a new variant of RAID, termed power-managed 

RAID™, which generates parity without requiring all drives in the RAID set to be powered 

on. To increase bandwidth, the system employs several concurrency mechanisms including 

load balancing I/O streams across many parallel RAID controllers. A number of 

optimizations are made to the interconnection architecture and caching schemes that lowers 

the cost of storage to that of typical automated tape library systems while exploiting the 

performance and reliability advantages of disk systems. Recent results at COPAN Systems 

have proven the viability of this new storage category and product. 

1.  Background 

Growing reference information, regulatory data and rich media archives [1] are providing new 

impetus for mass storage systems. Unlike transaction applications, these systems access a 

small fraction of the data infrequently or on a scheduled basis. One such application is backup 

and restore that is characterized by large-block streaming writes and infrequent reads. With 

their need for large-scale storage, these applications are very sensitive to cost. Historically, 

they have been addressed by automated tape libraries. While concerns with performance, lack 

of data protection, and the reliability of tapes [2] have always favored disk systems, their 

limited capacity and high cost have prevented them from replacing tape. The advent of high-

capacity SATA drives and their cost approaching that of tape motivates us to revisit this 

design issue.  

Existing approaches to high-capacity storage have been incremental, typically substituting 

Fibre Channel (FC) disks with lower cost ATA disks in standard RAID arrays. This does not 

result in increased storage density or the cost per unit storage of tape libraries which usually 

have a 3X advantage over disk systems. Therefore, a fundamentally different approach is 

required.  

We believe the best approach is to use an application and workload-driven architecture to 

provide the performance and reliability of disks at the scale and cost of tape. 

2.  A New Approach: Application Specific Storage System 

The specific needs of archival storage applications help define the architectural constraints. 

These include: 

 I/O requests to large block with sequential or predictable access 

421



 

 Performance metrics based on data rates (Mbytes/sec) and not on I/Os per sec (IOPs)  

 Time to first byte should be in ms to seconds, desired for mission-critical systems  

Given the above, we can eschew many common but complex features of traditional disk 

storage architectures: 

1. No need for large primary RAM cache. Since the storage is not used for high-

transaction I/O, there is little need for large shared caches, except for reads. 

2. No need for high-speed switched interconnection from host to disks. With more 

tolerance to latency than transactional systems, access from these applications do not 

benefit from non-blocking switched connectivity. 

3. No need to access all the data all the time. With access to a small fraction of the data 

(e.g., <5% in tape systems), a majority of disks could be taken off-line if the mean 

latency is bounded. In addition, most writes can be done sequentially. 

4. No need to limit capacity based on interconnection bandwidth. Since the capacity to 

data rate ratio is high, the ratio of total drive bandwidth to interconnect bandwidth can 

be higher than traditional disk systems.  

5. Ensure data availability. Given the scale of data they maintain, archival storage must 

have high reliability, data protection and availability.  

COPAN Systems’ architecture is based on power management of a large number of SATA 

drives. The basic concept was first used in the MAID (massive array of idle disks) project [3] 

that examined tradeoffs in disk power consumption and performance. The results showed that 

a MAID with cache can effectively support most reads from a large database archive.  

To meet enterprise class storage needs using a power-managed disk design, we had to satisfy 

multiple criteria. These included data protection, scalable capacity, high bandwidth, storage 

and data manageability, small footprint, and a cost equal to or better than tape storage costs. 

This introduces a number of design guidelines: 

1. Provide parity based redundancy: Tradeoff redundancy with effective cost of storage. 

RAID 1 provides 100% redundancy, but it also doubles the cost per unit storage. 

2. Ensure data protection and performance with drives power-cycled. Optimize 

tradeoffs between power cycling, storage density, performance, redundancy and cost. 

Keeping 30%-50% of drives online implies 10X more data online than tape systems. 

3. Ensure that I/O rate and parity protection are maintained, even when disks are in 

transition during the power-cycling of individual drives. 

4. Provide ways to scale total bandwidth of the storage system 

An implicit design objective was the optimal packing and configuration of the drives. The 

architecture that works best for a given volume turns out to be a three-level interconnect. If 

the total number of drives in the system is N, then N is decomposed into a 3-tuple, such that  

N = s.t.d  

where s is the number of storage enclosures or shelves, t is the number of “stick”, or column 

of disks, in the each shelf unit, and d is the number of disk drives in each stick in a shelf 

(Figure 1). All I/O requests to SCSI disk volumes arrive over FC links at the system controller 

which maps the logical volume to physical volumes on shelves connected by FC.  
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If physical constraints of the rack can be satisfied, N can be chosen to support very large 

storage capacities in a single system. The packaging of drives must also provide adequate heat 

dissipation so that the disks operate at or below the specified ambient temperature.  

We provide brief descriptions of the data protection, performance and reliability of the 

system. 

 

Figure 1. Three-tiered storage: decomposition into shelf, stick and disk 

2.1.  Efficient Data Protection: Power-Managed RAID™ 

Data protection using parity can be provided by power-cycling either full RAID sets or 

individual drives within the RAID set. COPAN Systems supports both approaches. However, 

power-cycling individual drives within the RAID set, termed power-managed RAID™ (PM-

RAID™), has the advantage of keeping more RAID volumes on-line (assuming nominally 1 

volume per RAID set) and reducing power swings.  

In PM-RAID™, all data is written sequentially from drive to drive and the parity drive is 

fixed. At a minimum, only one data drive and the parity drive are powered on. When writing 

initially to drive D0, the data on the parity drive P will also be D0 if the parity drive was 

initialized to zeros. When the writes exceed the capacity of D0, the second drive D1 is 

powered up and data is written to it, while drive D0 is powered down. At this point, the parity 

drive P will contain the XOR of the earlier data written to D0 and the new data written to D1. 

Similarly, after the writes to the third drive, the parity drive will contain the XOR of the data 

from drives D0, D1 and D2. Thus, after writes to all data drives in the RAID set, the parity 

drive will indeed be the parity for all drives in the RAID set. On the failure of a data drive, all 

drives in the RAID set will be powered on to reconstruct the failed data drive as in a normal 

RAID reconstruct. 

Figure 2 shows data written sequentially using a stripe size s of 1. If more bandwidth is 

desired, a larger stripe size s, 1  s  n in an n+1 RAID, should be used. The most power-

efficient and least bandwidth case is s = 1 with only 2 drives powered on, while the maximum 

bandwidth case is s = n when all n+1 drives are powered on. Note that the s = n case 

corresponds to traditional RAID 4 [4]. PM-RAID™ is therefore the most generalized version 

of RAID 4 under power constraints.  

Various configurations of the number of on-line volumes and associated bandwidth are 

possible with PM-RAID™. For example, if there are 1000 data drives in the system that are 

set up as 4+1 RAID sets with a budget to power only 25% of all drives, the maximum number 

of volumes that can be powered is 125, or 50% of all volumes or 2X the drive fraction 
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powered on. Each volume can be accessed sequentially at a data rate possible from one disk 

drive.  

PM-RAID™ utilizes a few always-on mirrored drives that maintain information on volume 

metadata, drive health, and read and write caches. Unlike previous approaches on disk on disk 

caching [5] used for performance, write caching is used to ensure that parity generation and 

I/O data rates can be sustained during power transitions of the drives. In general, including the 

spare and the metadata drives, less than 30% of all drives can be kept online while 

maintaining high bandwidth given sufficiently large number of disks in the system. 

To ease storage management, the drive power management is transparent to the end user or 

application. The stripe width of the PM-RAID™ as well as any striping of the user’s volumes 

across RAID sets in the shelves is managed by the system and not the user.  

 

Figure 2. Writes in a power-managed RAID™  

2.2.  Increasing Performance: Concurrent I/O 

Power management limits the number of drives powered on at any time. This limits the total 

I/O per storage shelf. To increase aggregate bandwidth, we use a number of concurrency 

techniques. 

First, because the system controller has independent FC connections to storage shelves 

(Figure 1) and each storage shelf contains its own RAID controller, write and read bandwidth 

is increased s-fold with s shelves. Each shelf RAID controller can stripe data across up to t 

sticks.  

Second, since each volume on the shelf is minimally comprised of 1 active data drive, the 

bandwidth can also be increased by striping (RAID-0) logical volumes from the system 

controller across volumes in the shelves. 

Third, more I/O concurrency between the shelf controller and the SATA drives is provided in 

the stick using a custom SATA data and command router. This router provides concurrent 

access and command queuing of I/O to all d drives in a stick. This enables high-bandwidth 

I/O operations across a large number of drives in the shelf. 

Finally, we use disk caches to cost-effectively ameliorate latency effects of disk spin-up, if 

there is no a priori information on access patterns. When write requests can be scheduled, as 

in a backup, a currently powered-down disk can be scheduled to power up with sufficient lead 
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time before the end of file is reached on the current drive. When the write requests cannot be 

scheduled, the data can be redirected to a spinning drive cache and later staged to the true disk 

target. Read disk caches also store data from all data drives. A read request to a powered-off 

drive is directed to the read cache, while the target drive is powered up. In the case of a read 

cache miss, our current measurements indicate that the read penalty is well below 10 seconds.  

We also note that for streaming applications that access large blocks of data, the read latency 

of a few seconds on a cache miss is usually dwarfed by data transfer time. 

2.3. Increasing Data Reliability: Effect of Power Management 

Using high-capacity ATA drives and high-density drive configuration to create PB-sized 

storage systems raises the importance of data protection and data availability. We address the 

issue in many ways.  

First, power-cycling the drives has a direct impact of increasing disk life and therefore system 

reliability. With 1000 drives and a drive MTBF of 400,000 hrs, the expected first failure of a 

drive is 18 days. Such low MTTF implies frequent drive swap-outs that is not be acceptable 

for most data centers. With PM-RAID™, if drives are powered with an average duty cycle of 

25%, the net effect is to extend the effective drive MTTF to 4X the nominal value, or 1.6M 

hours, greater than typical SCSI or Fibre Channel.  

Second, we closely monitor the total power cycles, also known as contact start-stops (CSSs) 

since all drives have a specified maximum CSS. We therefore ensure during operations that 

all drives are all well below the CSS threshold specified by the drive vendor.  

Third, to accommodate drive failures that can put a large amount of data at risk, we use a 

unique proactive replacement mechanism. By continuously monitoring drive attributes, 

embedded controller intelligence determines whether a drive susceptible to failure should be 

replaced. Proactive drive replacement enables recovering data from the drive before failures, 

allowing the system to protect data even as failing drives are replaced. 

3. Results 

At the time of writing, we have demonstrated end-to-end I/O from the user to the drives. We 

have proved two important concepts. First, PM-RAID™ and the interconnect architecture 

perform as expected, with linear scaling of bandwidth with increasing I/O load. With the 

current design, 1000 MB/s or more bandwidth is possible in a single system. Second, the 

implementation shows that close-packing of drives in the system kept environmental 

attributes within specifications so data reliability is assured to be better than traditional disk 

systems. More detailed results will be presented at the conference. 
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Abstract 
 
Performance has always come at a steep cost in the world of enterprise storage, with 
flexibility often taking a back seat when it comes to IT purchasing decisions. In fact, 
storage has typically been bought and deployed as a “one size fits all” solution, regardless 
of the kinds of applications the network is running. Such an approach has required 
multiple servers to address multiple needs, resulting in significantly higher costs and a 
much greater degree of management complexity. 
 
BlueArc’s Multi-Tiered Storage (MTS) solution changes all this. MTS offers storage 
performance and consolidation while supporting different types of storage within the 
same network-attached storage (NAS)-based system, according to the specific 
requirements of the applications. For the first time, a combination of high-performance 
online, moderate performance nearline and infrequently accessed archival data can be 
configured in a single, seamless NAS platform—a BlueArc SiliconServer. 
 
This paper looks at the issues surrounding today’s growing storage needs in enterprise 
and project applications, examines the need for a multi-tier storage solution, explains 
BlueArc’s Multi-Tiered storage platform and demonstrates how the system is applied to 
storage applications. 
 
Today’s Issues 

 
Online data is doubling each year, but disk prices are falling rapidly. Now storage access, 
infrastructure and software costs are the dominant factors in the rising cost of storage. 
 
Today’s business need for scalable storage broadly fits into two categories - enterprise 
and project storage. In both of these applications, storage needs are growing 
exponentially. 
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Enterprise Storage 

 
Enterprise user home directories are increasing more than two-fold annually, as 
presentations and documents become more graphics rich, email traffic increases and as 
employees need to keep more data at their fingertips to help their company prosper in a 
highly competitive and demanding marketplace. For example, it was not too long ago that 
a 2 Megabyte PowerPoint presentation was considered large, while now we see large 
presentations approaching 10 Megabytes apiece, and the average size nearing 2 
Megabytes. Factors such as this, combined with employees’ needs to retain additional 
storage in their home directories and mail archives is driving the average enterprise IT 
manager to prepare for a four-fold increase in storage space simply to keep pace with the 
organization’s needs. 
 
Project Storage 

 
Work on digitized feature films, particle physics projects, bioinformatics/genetic 
research, seismic research, digital design, broadcast, medical imaging, CAD and other 
projects already require very significant levels of storage. Business demands and new 
enabling technology (e.g. low-cost Linux cluster super-computing) are driving for faster 
project completion and the analysis of even more detail, driving the need for performance 
network access to multiple terabytes of storage. The recent adoption of low-cost ATA 
disk arrays in many data centers offers affordable online storage or caching of archive 
data. In many applications this brings strong productivity benefits. Immediate online 
availability of archived data enables it to be quickly searched and re-used, rather than 
abandoned on low-performance archive tapes. In a typical enterprise, this combination 
promotes growth beyond tens of terabytes of online storage. 
 

Infrastructure costs are becoming dominant in scaled storage applications 

 
Attempts to deal with this level of growth are stretching current storage architectures to 
the limit. While Fibre Channel storage arrays are still a significant cost factor in 
expanding storage needs, the simple cost of storage arrays themselves is now not the 
prime contributor to growth costs. The infrastructure costs surrounding storage expansion 
(backup strategies, server proliferation and administration costs) are poised to become 
highly dominant factors for growth.  
 
24 by 7 access to data  

 
24 by 7 access to storage is being threatened by extending backup windows. Elimination 
of backup windows is the much-needed solution.  
 
A difficult issue that enterprise and project IT managers face is the business mandate for 
24 by 7 access to stored information. In the face of expanding storage needs, IT managers 
would like to be in a position to extend backup windows to accommodate for increased 
growth rather than contract them, enabling administrators to scale each server further, 
rather than proliferating servers. But backup activity cannot spill into peak business hours 
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if acceptable service is to be maintained. Traditional server architectures cannot run 
backup copy activity and continue to serve files without a severe drop in performance, 
which only becomes more difficult as service levels remain high around the clock. 
  
Additionally, fast restore times and disaster recovery are key – the cost of downtime to 
businesses is high and IT managers need to strike the right balance in this area of the IT 
strategy, devising what amount of history to keep online and where it should be stored.  
 
The introduction of large low-cost ATA storage arrays has changed the landscape for 
data restore and disaster recovery. With large, low-cost storage as the target for backup 
data and prime source for immediate backup history, both backup and restore time are 
reduced when compared to traditional tape backup. While online disk storage does not 
replace the high integrity holding data copies off site, disk storage offered as “virtual 
tape” or replicated intermediate storage is highly beneficial for reducing backup times 
and restore times. Savings and benefits from low-cost storage must not be competing 
with a higher cost, more complex infrastructure to access it. 
 
Changing the rules for Storage 

 
Today’s issues demand a different architectural approach to storage.  
 

 The infrastructure costs associated with scaling storage must be reduced. 
 

Enterprise and project storage needs will continue to expand. Raw storage costs 
are reducing significantly, but infrastructure costs associated with increasing 
storage capacity remain high. Proliferation of servers, backup and restore times, 
backup costs, storage networking complexity, and the administration overhead 
associated with storage infrastructures need to be tackled and contained. 

 
  

 Match storage to applications without imposing large infrastructure costs. 
 

The arrival of resilient arrays of low-cost and high capacity ATA disks heralds the 
introduction of staged backup, which reduces both backup and restore times and 
lets servers scale much further. Low cost of storage and very high capacity are 
key elements for this application, since even the lowest performing disks are 
significantly faster than tape access. ATA storage fits this need. However, the 
performance characteristics of this type of storage are not high enough for 
database and transaction intensive applications. In these cases, Fibre Channel 
disks deliver appropriate performance at a higher cost.  

 

 24 Hour availability. 
 

Set-aside backup windows are no longer acceptable in today’s around the clock 
businesses. They must be removed or significantly reduced, requiring a storage 
platform that can be backed up without affecting user access performance, even in 
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peak activity periods. Replication options must also operate without affecting user 
activity. Restore capabilities need to be very fast and disaster recovery needs to be 
quick and simple. Access to storage needs to be highly available, but redundant 
path architectures deployed to achieve this must be uniform across all types of 
storage without increasing infrastructure costs. 

 

 Scaling by server proliferation is too expensive. 
 

Performance limitations in traditional servers restrict the amount of storage 
supported by a single server. Physical scaling limits for direct or SAN-attached 
storage cannot ultimately be avoided, even by offloading backup from the server. 
NAS appliances and NAS gateways extend these limits and are becoming more 
important as installed levels of storage continue to expand. Traditional NAS is 
more cost effective but lacks full integration 

 

The role of NAS is changing. Switched Gigabit Ethernet as a network backbone expands 
the role of NAS in today’s networks, while resilient network switch architectures support 
vast bandwidths with high availability. A Gigabit-switched backbone can support user 
traffic, application server disk access and archive traffic with ease. Furthermore, network 
traffic can be shaped and prioritized with standard tools in the Gigabit backbone switch, 
should the need arise. 
 
With all this functionality included, the cost of commissioning a second and independent 
storage network needs careful thought. By removing file and archive storage from the 
SAN, server and SAN networking costs can be saved. For this reason, NAS has emerged 
as the optimal architecture for primary file storage and for online archive applications, 
which the availability of low-cost ATA storage has enabled. NAS also challenges the role 
of SAN as prime storage for database and other application servers. 
 
Traditional NAS solutions have dedicated functionality. Performance NAS filers support 
primary file storage, and cost-competitive systems support general storage needs with the 
option of dual server heads offering high availability and fast fail-over in the event of a 
network or NAS component failure. Slower, cost-effective single head NAS systems are 
used for archive applications, built to support low-cost ATA storage generally in blocks 
of 2- 12 terabytes.  
 
For a customer to require a combination of archive storage and primary storage is quite 
common, but to further reduce costs, an integrated approach, with all storage types 
supported in a single NAS system, has been sought but has not been found, as regrettably 
such an approach would demand unsustainable scalability and performance from the 
software-based architecture on which traditional NAS filers are based. The approach 
would also introduce performance issues related to backup, since is it hard to conceive 
that tape archive copying would be completed during today’s shrinking backup windows. 
Decreased user access performance when running archive traffic during business hours 
adversely affects business productivity. 
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BlueArc - Scalable, high performance Multi-Tiered Storage with low Infrastructure 

costs 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
BlueArc Network Attached Storage is based on the SiliconServer, a NAS head with 
hardware data movement, similar to network backbone switches. BlueArc’s architecture 
has the performance and scalability to support an integrated storage solution, with 
hardware data movement to maximize throughput. 
 
BlueArc also solves the backup traffic problem, because of the high internal bandwidth in 
the server and because movement of data between network and storage is prioritized over 
disk to disk and disk to tape activity, should contention for resources arise. 
 
BlueArc’s Multi-Tiered Storage, with SiliconServer scalability and performance, 
consolidates storage to a single system. The system changes network storage rules by: 
 

 Reducing the infrastructure costs of scaling  

 Offering multiple tiers of varied cost and performance storage, without imposing 
large infrastructure costs 

 Reducing the number of servers through consolidation and replacement 

 Enterprise class continuous availability storage 
 
The enhanced productivity derived from MTS is seen by customers in fields such as 
Broadcasting, Post Production, Manufacturing Genetic Research, Government Research, 
Mapping, University projects and many more.  
 
The use of hardware to move data within the SiliconServer is extended to backup and 
disk-to-disk copies over Fibre Channel. The SiliconServer uses hardware data movement 
in the implementation of NMDP, the standards based backup protocol for NAS. Coupled 
with the ability to schedule a snapshot of the file system prior to making a backup, this 
capability has three distinct advantages:  
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1. The traditional problem associated with slowed server performance when running 

backup activity is removed and there is no need for a backup window. 
 

 Network data movement is prioritized over NDMP traffic  

 NDMP is supported by all backup software applications 

 Backups run faster because of speed of hardware data movement 
 
2. Tape drive efficiency 

 Backups of a frozen on-disk snapshot can be spooled to tape as a background 
activity, if necessary running 24 hours per day to get maximum scalability out of 
tape drives. This delivers two to three times the scalability from each tape drive 
compared with running the drive only during a backup window. This mode of 
operation is fully supported by standard data backup software applications. 

 
3. Backup copies can be stored online for immediate access 
 

 Fast restore and disaster recovery by referencing an online snapshot of the 
backup, rather than referencing the archive tape. SiliconServer file system 
snapshots store a complete image of the file system at the time the snapshot was 
taken. The snapshot retains a block level image of the file system. As files 
subsequently change, the snapshot stores only the blocks that have been modified 
since the snapshot was taken. Snapshots are highly efficient in terms of the 
amount of disk space they occupy, therefore it costs little to retain a week or more 
of daily backup copies online for fast restore should it be necessary. Backup 
copies on disk are not only highly desirable for business continuance in the event 
of a disaster or accidental deletion, but they also reduce the number of required 
tape library tape slots - if backup history is held online, there is no need to leave 
recent backup tapes online in the tape library.  

 
Shared File Storage  

 

BlueArc’s Multi-Tiered storage is mounted as a network share/export. This means that 
multiple application servers can share the same data using standard Windows and UNIX 
locks. The SiliconServer also supports secure sharing between UNIX and Windows 
environments, with permissions mapping and lock integration between the two 
environments. Data sharing is vital for imaging, Web applications, design, engineering, 
and research applications where centralized data needs to be shared between a number of 
application servers and clients. BlueArc’s Multi-Tiered Network Attached Storage is the 
optimal, strategic choice for these applications.  
 

432



Managing Scalability in Object Storage Systems for HPC Linux

Clusters

Brent Welch

Panasas, Inc
6520 Kaiser Drive

Fremont, CA 94555
Tel: 1-510-608-7770

e-mail: welch@panasas.com

Garth Gibson

Panasas, Inc

1501 Reedsdale Street, Suite 400
Pittsburgh, PA 15233

Tel: 1-412-323-6409
e-mail: garth@panasas.com

Abstract

This paper describes the performance and manageability of scalable storage systems
based on Object Storage Devices (OSD).  Object-based storage was invented to provide

scalable performance as the storage cluster scales in size.  For example, in our large file
tests a 10-OSD system provided 325 MB/sec read bandwidth to 5 clients (from disk), and

a 299-OSD system provided 10,334 MB/sec read bandwidth to 151 clients. This shows
linear scaling of 30x speedup with 30x more client demand and 30x more storage

resources.  However, the system must not become more difficult to manage as it grows.
Otherwise, the performance benefits can be quickly overshadowed by the administrative

burden of managing the system.  Instead, the storage cluster must feel like a single
system image from the management perspective, even though it may be internally

composed of 10’s, 100’s or thousands of object storage devices.  For the HPC market,
which is characterized as having unusually large clusters with usually small IT budgets, it

is important that the storage system “just work” with relatively little administrative
overhead.

1. Scale Out, not Scale Up

The high-performance computing (HPC) sector has often driven the development of new

computing architectures, and has given impetus to the development of the Object Storage
Architecture. The new architecture driving change today is the Linux cluster system,

which is revolutionizing scientific, technical, and business computing. The invention of
Beowulf clustering and the development of the Message Passing Interface (MPI)

middleware allowed racks of commodity Intel PC-based systems running the Linux
operating system to emulate most of the functionality of monolithic Symmetric Multi-

Processing (SMP) systems. Since this can be done at less than 10% 
 

the cost of the
highly-specialized, shared memory systems, the cost of scientific research dropped

dramatically. Linux clusters are now the dominant computing architecture for scientific
computing, and are quickly gaining traction in technical computing environments as well.
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Unfortunately, storage architecture scalability in terms of performance, capacity, and

manageability have not kept pace, causing systems administrators to perform tedious data
movement and staging tasks on multiple standalone storage systems to get data into and

out of the Linux clusters where scalable resources are available. There are two main
problems that the storage systems for clusters must solve. First, they must provide shared

access to ever larger amounts of data so that the applications are easier to write and
storage is easier to balance with the scaling compute requirements. Second, the storage

system must provide high levels of performance, in both I/O rates and data throughput, to
meet the aggregated requirements of 100’s, 1000’s and in some cases up to 10,000’s of

nodes in the Linux cluster. Linux cluster administrators have attempted several
approaches to meet the need for shared files and high performance, supporting multiple

NFS servers or copying data to the local disks in the cluster. But to date there has not
been an effective solution to match the power of the Linux compute cluster for the large

data sets typically found in scientific and technical computing.

1.1 Methods of Data Sharing in Clusters

Sharing files across the Linux cluster substantially decreases the burden on both the
scientist writing the programs and the system administrator trying to optimize the

performance of the system and control the complexity of cluster management. There are
several approaches to providing shared data to a computing cluster:

• Network file servers.  The NFS protocol and file server hardware impose a bottleneck

between the clients that share the data and the disk resources that store it. As storage
needs grow, additional file servers with their own disk resources must be added, creating

storage “islands” and adding complexity for users and administrators alike.
• Block storage via SCSI on Fiber Channel (FC) provides good performance access for a

small number of disks, but block storage is private to individual hosts making it generally
unscalable.  Systems like GFS [1] and GPFS [2], sometimes called SAN filesystems, can

provide shared FC storage for compute nodes.  However, the costs of FC adapters per
node, FC switching with enough ports for all cluster nodes, as well as FC administrators,

can significantly increase the cost of each node in the compute cluster.  Moreover, SAN
filesystems are also fundamentally block-based, and the overhead of managing block-

level metadata in terms of lock messaging and distribution of block-level metadata limits
scalability.

• Peer-to-peer systems share hard drives attached to individual compute clusters.
However, the complexity and cost of providing storage redundancy prohibits permanent

storage of valuable data in per node disks.  Moreover, storing data in per node disks
introduces complexity in load balancing because some nodes have much worse I/O

performance depending on where the file was written.
• A new alternative is Object-based Storage Architectures.  The Panasas object-based

storage system is built from commodity parts, including SATA drives, standard
processors and memory, and Gigabit Ethernet to provide a storage system with excellent

price/performance characteristics. Its high performance file system can be shared among
multiple compute clusters equally and with little overhead.  It can also share the same
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files with legacy engineering workstations using standard NFS and CIFS protocols. The
entire storage system is available through one global shared namespace in a manner

reminiscent of the Andrew File System (AFS) [3].

2. Object-based Storage Architecture

The Object-based Storage Architecture utilizes data Objects, which encapsulate variable-
length user data and attributes of that data [4,5,6]. The device that stores, retrieves and

interprets these objects is an Object Storage Device (OSD) [7]. The combination of data
and attributes allows an OSD to make decisions regarding data layout or quality of

service on a per-object basis, improving flexibility and manageability. The object
interface is mid-way between the read-write interface of a block device, and the high-

level interface of an NFS server.  The core object operations are create, delete, read,
write, get attributes, and set attributes. By moving low-level storage functions into the

storage device itself and accessing the device through a higher-level object interface, the
Object Storage Device enables:

•  Dedicated resources to block-level management,
• Intelligent space management in the storage layer allowing the OSD to make late

binding decisions on the allocation of data to the storage media,
•  Data-aware pre-fetching, and caching,

• A natural paradigm for scaling the capacity and performance characteristics of the
storage system.

OSD-based storage systems can be created with the following characteristics:

•  Robust, shared access by many clients,
•  Scalable performance via an offloaded data path,

•  Strong fine-grained end-to-end security.

These capabilities are highly desirable across a wide range of typical IT storage
applications. They are particularly valuable for scientific and technical applications that

are increasingly based on Linux cluster computing which generates high levels of
concurrent I/O demand for secure, shared files.

2.1 Implementing Files using Objects

An Object-based storage system includes metadata managers that coordinate data access

from multiple clients and implement POSIX filesystem semantics over the object storage.
They also provide location information and implement security policies.  For scalable

performance, the metadata servers are “out-of-band” of the data path between clients and
storage nodes.  The metadata servers retain strict control of what data clients can access

because the OSDs provide secure access rights enforcement with every operation [8].
Studies indicate that even in demanding small file with random access workloads, these

metadata servers handle less than 10% of the work associated with file access, with the
rest going to the object storage devices [9], and that load balancing metadata service can

be managed by partitioning the objects [10].
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In the Panasas implementation,
metadata managers are

executed on server blades
called DirectorBlades, and the

OSDs are executed on server
blades called StorageBlades.

All permanent filesystem data
s t o r a g e  i s  o n  t h e

StorageBlades.  The storage
cluster can have a variable

number of Director and
StorageBlades depending on

the workload requirements;
workloads with legacy NFS

and CIFS access need more
DirectorBlades, while high-

bandwidth, large file workloads
need very few DirectorBlades.

The object interface has a core

security protocol that allows
safe concurrent access by

multiple clients.  Clients read
directory objects to process filesystem pathnames.  Directories map from names to object

identifiers.  Clients contact metadata servers to obtain location information (maps) and
security capabilities (caps) that enable direct I/O access.  These “maps and caps” are

cached by clients so repeated access to files do not require interaction with the metadata
manager.  The OSDs verify security capabilities on every client access, so they enforce

the policies implemented on the managers without having to know the details of POSIX
or Windows ACL semantics.  Our metadata managers also implement a lease-based

cache consistency protocol so clients can efficiently cache file attributes and data, which
provides further optimizations to file system access.

Individual files are striped across multiple StorageBlades (OSD).  Striping files across

objects allows high bandwidth access as well as protection from failures by using
standard RAID techniques.  The combination of file distribution across storage devices

and multiple client access leads to very high aggregate performance to the shared storage
system.

2.3 NAS Compatibility

It is also important that a new architecture such as Object-based storage be able to

support NFS and CIFS compatibility for data sharing with desktops and other non-cluster
computing platforms. The Panasas storage cluster does this in its DirectorBlades.

DirectorBlades export standard NFS and CIFS interfaces, hiding the Object Storage
Cluster from these legacy systems. Of course, a single NAS interface is a performance

Figure 1. Object Storage Architecture
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bottleneck, but by deploying multiple NAS “filer head” interfaces in the storage cluster,
even legacy applications see scalable performance, albeit less efficiently than through the

Panasas file system protocol available on the Linux cluster nodes. Every DirectorBlade is
capable of serving any file in any StorageBlade to any client. Panasas provides a global

filesystem namespace, so clients only need a single mount point, which they can mount
from any available DirectorBlade.

By providing a shared filesystem between the Linux computing cluster and the rest of the

computing platforms, data management is dramatically simplified. For example, non-
cluster hosts with tape drives can import data via multiple NFS access points in parallel,

then the Linux computing cluster can access the data in place, and finally, non-cluster
desktop applications can visualize and analyze the results from the computing cluster. In

contrast, other approaches require explicit distribution of data to each node in the
computing cluster, or management of multiple separate NAS systems.

3.  Performance of Object-based Filesystems

There are four main components of the Panasas storage system: the client, the

DirectorBlade, the StorageBlade, and the Shelf [11].  The client is a loadable kernel
module that runs in the Linux compute nodes and implements a POSIX filesystem.  It

plugs into the VFS interface inside Linux.  The StorageBlades have 2 SATA drives, a 1.2
GHz Pentium III processor, 512 MB memory, and 1 GE network port.  The

DirectorBlades have a 2.4 GHz Pentium 4 CPU, 4 GB memory, and 1 GE network port.
Each shelf holds up to 11 Storage or DirectorBlades, and it has an integrated GE switch

that provides up to 4 trunked GE ports out of the shelf.  (A pass-through card provides 11
independent ports, but the numbers shown here use the integrated switch.)  Each shelf

also includes dual power supplies and a battery module, which together provide an
integrated UPS function for the DirectorBlades and StorageBlades.

The bandwidth tests described below were run with 9 or 10 StorageBlades (OSD) per

shelf, and in the bandwidth tests the DirectorBlades were mostly idle because most of
their resources are reserved for NFS and CIFS.  The goal of presenting these numbers is

to give a general flavor of the scalability of the system performance.  Results vary
depending on the speed of the clients, the size of their I/O requests, and network

topology.  Typical clients in our tests have a single 2.4 GHz Pentium CPU and 1 GE
network interface.  Typical I/O requests in our bandwidth tests are 64 KB, and the

network in our lab connects the systems and cluster under test through a high-end non-
blocking Extreme Network BlackDiamond GE switch.  In the bandwidth tests, files are

always large enough that data must be streamed on and off the disk platters as opposed to
being satisfied by cached data.
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Figure 2. Bandwidth of 10 OSDs vs. the number of Clients

Figure 2 shows that aggregate bandwidth of one file per client in the same directory on a

single shelf of 10 OSDs scales quite well as the number of clients increases until the shelf
is providing about 380 MB/s.  A single client can read from a file that is striped across 10

OSDs at about 90 MB/sec using a single GE port.  As the number of clients scales up, but
the storage resources remain the same, the aggregate bandwidth increases but the per-

client bandwidth drops off.  The less than linear scaling after about 8 clients per shelf is
due to increasing load and contention at the storage devices that have to manage multiple

I/O streams in parallel.  There is also contention and a bottleneck in the shelf network as
the data passes through the four trunked GE links providing a maximum of 4 Gb/s to each

10-OSD shelf. At saturation, each SATA drive is delivering a sustained bandwidth of just
over 19 MB/sec split among the tens of clients pounding on it.

Write bandwidth follows a similar curve, with a single client writing at about 77 MB/sec

and 10 clients able to write at 335 MB/sec.  The write bandwidth peaks at less than the
read bandwidth because the RAID engine runs at the client and so parity data flows over

the network between the client and the storage nodes.  For example, there is about 12%
more data being written in an 8+1 RAID configuration than is reported in the bandwidth

number.  The advantage of moving RAID to the client is that it allows shared access to a
scalable number of drives without the bottleneck of a traditional RAID controller [12].  In

addition, the XOR computations RAID requires can be done efficiently using specialized
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MMX instructions on the Pentium CPU, and their speed increases as client CPUs and
memory systems get faster.

Figure 2 might led one to believe each shelf was a standalone 300-400 MB/s storage

system.  Not so.  When multiple shelves are bound together by Panasas object storage
software, total performance scales at 300-400 MB/s per shelf.  Scaling when adding more

shelves works quite well even if files are still only striped over 10 StorageBlades because
the set of OSDs used to store each file are drawn from all OSDs on all shelves. The

contention at any single storage device remains about the same.

Figure 3 shows several multi-shelf high bandwidth test results.  For example, the test with
299 OSDs achieved 10334 MB/sec read bandwidth.  There were 32 shelves and 151

clients, or about 5 clients per shelf.  The per-shelf bandwidth of 322 MB/sec in this
configuration is consistent with tests done with 5 clients against one shelf.  (The large test

used a larger application read blocksize than in the chart shown in Figure 2, so the
numbers are not directly comparable.)  As files are added, their data is spread across

different subsets of OSDs automatically, on a per-file basis.  This allows large numbers
of clients to share many OSDs efficiently.  Figure 3 shows that bandwidth scales quite

well with the number of OSDs.  In fact, because our tests are generally done with only
about 5 clients per each 10-OSD shelf, Figure 2 indicates that the total bandwidth

achievable from these systems can be higher.  For example, the difference between the
points at 116 and 118 OSDs is that the first test used 61 clients to achieve 3.1 GB/sec,

while the second used 79 clients to achieve 3.9 GB/sec.  That is about 50 MB/sec per
client in both configurations.  Finally, it is important to note that these data points were

taken over time in our labs with varying configurations of clients, network topology, and
software tuning, so each point is not strictly comparable.  However, the overall result is

that the system scales well, at about 15-20 MB/s per disk, when the number of clients is
at least 25% as many as there are disks.
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Figure 3. Scaling Aggregate Bandwidth with Number of OSDs

When files are striped very widely, contention increases because each OSD has

connections to more clients.  In a concurrent write test with 151 clients writing to a
single, shared file striped across 198 OSDs, the write bandwidth was 2775 MB/sec.  The

OSDs were organized into 22 shelves with 9 OSDs each, for a per-shelf bandwidth of
about 126 MB/sec.

For legacy, non-cluster computers, access is through NFS or CIFS.  Because Panasas

DirectorBlades offer multiple NFS servers as a single storage pool, the underlying
scalability of Object Storage is made available as a scalable NAS system.  Figure 4 shows

two results from the industry standard SPEC SFS benchmark [13]
1
.  First we ran the SFS

test against a 5-shelf system with 10 metadata managers and 45 OSDs, providing a single

rack 90-disk system similar to the high-end of dedicated monolithic NAS filers. This
delivered an excellent throughput of 50,907 ops/sec at an Overall Response Time  (ORT)

of 1.67 msec.  The average response time as a function of load is shown in Figure 4 in the
lightly shaded curve peaking at 50,000 ops/sec.  ORT is a weighted average of the

average response time at each of 10 load points.  To show how NFS scales, we also show
the results from a 30-shelf system with 60 metadata managers and 270 OSDs, which

achieved 305,805 ops/sec at an ORT of 1.76 msec.  While 300,000 ops/sec is much larger
than any other reported SFS benchmark run to date, our real point is that a Panasas

storage cluster with 6x the resources delivers 6x the workload at about the same response
time profile.

                                                  
1
 NFS ops/sec as measured by the SPEC benchmark.  SPEC and the benchmark name SPECsfs97_R1 are

registered  trademarks of the Standard Performance Evaluation Corporation.
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The SFS test has a uniform access requirement so each client is contacting every file
server during the benchmark run.  In this case each DirectorBlade is running two

orthogonal functions:  one is the metadata management for the object storage filesystem,
the second is a client of that filesystem that is being exported via an NFS server module.

The NFS server on each DirectorBlade accesses the metadata function on other directors
as well as storage on all the OSDs.
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Figure 4. Results for 10- and 60-DirectorBlade Systems

4. Managing Large Scale Systems

The ideal scalable storage system is a large, seamless storage pool that grows
incrementally without performance degradation and is shared uniformly by all clients of

the system under a common access control scheme.  As the system scales in size,
however, issues arise in two general areas: traditional storage management and internal

resource management.  Both of these areas are affected by the distributed system
implementation of the storage system itself.  To external clients, the storage system

should feel like one large, high-performance system with essentially no physical
boundaries imposed by the implementation.  Internally, the system must manage a large

and growing collection of computing and storage resources and shield the administrator
from chore of administering individual resources.

4.1 Traditional Storage Management

Traditional storage management issues include system configuration, monitoring system

performance and capacity utilization, responding to failures, and adding and configuring
hardware resources as the system grows. A scalable storage system should minimize the
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burden these traditional storage management issues place on an administrator so the
system can grow to very large capacities with undue operating costs.

The Panasas object-storage architecture simplifies capacity and device management by

hiding the details normally associated with block devices such as LUN definition and
Fiber Channel zone definitions.   Instead, the filesystem is built from a collection of

object storage devices (OSD) and metadata managers (Directors).  The filesystem
automatically stripes files across storage devices using RAID techniques to tolerate the

failure of storage devices or individual objects (e.g., due to media errors).  As more
storage devices are added, files are striped more widely.  As stripes become wider,

additional parity objects are introduced to limit the size of failure domains.  A unique
aspect of object-based storage is that RAID configurations are configurable on a per-file

basis.  For example, mirroring is more efficient for small write accesses, but has high
capacity overhead compared with RAID 4 or RAID 5.  Ordinarily RAID parameters are

managed automatically by the system.  For example, the Panasas filesystem uses
mirroring for directories and small files, while larger files use RAID 5. However, in

simplifying management we do not want to go so far that we hurt our users’ ability to
optimize performance.  For this reason an optional a programming interface exposes

stripe width and RAID parameters so MPI IO middleware layers can create files with
specific bandwidth and reliability attributes to best match application requirements.

New capacity is added simply by adding one or more new StorageBlades to the system.

However, this can create a capacity imbalance among the StorageBlades, new blades less
full than older blades, so the system actively rebalances capacity across StorageBlades.

This is done efficiently by transparently moving component objects.  For example, if files
are striped across N StorageBlades, then each file is composed of N component objects,

one component on each StorageBlade.  When a new StorageBlade is added to the system,
the system selects component objects from each of the existing StorageBlades, and

moves those component objects onto the newly available StorageBlade.  This reduces the
capacity utilization across existing StorageBlades and fills up the new StorageBlade.  The

active balancer runs in the background at a low priority.  The filesystem blocks the
balancer from using files that are being used, and if an application happens to access a

file that is currently being rebalanced, it is temporarily blocked from using the file.  The
application’s access proceeds automatically once the balancer has finished moving the

component object.

Backup and restore is obviously important for any storage system.  One nice benefit of a
high performance, shared storage system is that multiple backups can proceed in parallel.

This helps the administrator reduce the backup window to manageable levels, even with
very large systems.

Monitoring and configuration is done via a central management console that has a Web

interface as well as a command line interface.  Any feature accessible via the GUI is also
accessible via the CLI.  It usually turns out that the GUI is best for new users, offering a

simple display of performance monitoring information, and a quick overview of the
system.  However, for large systems and more experienced administrators, it can become
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tedious to configure the system one click at a time.  Instead, a CLI that can be scripted
(we have a TCL-based shell) can be a real time saver and an enabler for site-specific

monitoring and data collection.

4.2 Internal Resource Management

Because the storage system is itself a cluster of computers working together to provide
service, there are internal management issues such as resource discovery, software

upgrade, failure detection, power and thermal management.  These internal issues should
be handled automatically by the system, yet provide the administrator with monitoring,

failure reporting, and robust failure handling.

The Panasas storage system is IP-based, and its system configuration includes a block of
IP addresses that is managed by an internal DHCP service.  This runs on an alternate port

so it will not conflict with the customer’s existing DHCP infrastructure.  The Panasas
DHCP protocol is extended with additional information about device serial numbers,

types (Storage or Director), software revision level, and physical location (shelf and slot).
As blades boot up the system discovers their type, location, and software version and

automatically builds its configuration database.  StorageBlades are automatically added
to the storage pool as they come on-line, so provisioning a running system just requires

physical addition of StorageBlades.

The external view of the system is through a single DNS name.  Clients mount the file
system from this single name, and their filesystem accesses are automatically directed to

the appropriate DirectorBlade as they access different directories.  Of course, I/O access
goes directly between clients and StorageBlades using the maps they get from

DirectBlades during access control checks.  In high availability configurations, the
system DNS name is mapped to a set of IP addresses, and clients can contact any of these

addresses to mount the filesystem.  For NFS and CIFS load balancing, Panasas provides a
delegated DNS name server to distribute legacy clients across DirectorBlades.

Software versions are maintained uniformly across the storage cluster to avoid awkward

compatibility issues.  Each blade boots from its own drive to avoid massive congestion
on a netboot server during system startup.  Software upgrade is achieved with a two-

phase installation operation where all blades install a new version and reach a commit
point in the first phase.  Only if all blades are ready does the system commit to the new

version and restart.  Filesystem clients pause for the duration of the commit and restart,
which is about 5 minutes regardless of the size of the storage cluster.  When new blades

are added to a system they are checked for hardware compatibility, and they are
automatically upgraded to the same version as the rest of the system.

Power and thermal management is important for any high-density cluster installation.

The Panasas blades are housed in a shelf that has dual power supplies and a battery
module that together provide an integrated UPS.  The UPS protects the blades against

power surges and brown outs. If AC power is lost completely, the blades are signaled and
use battery power to write out cached data and safely shutdown the system.  By providing
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an integrated UPS and power management in every shelf, the system can be aggressive
about caching data in main memory without burdening the administrator with building a

foolproof data center-scale UPS and scaling it up as the system grows.  The
StorageBlades accumulate data and metadata updates and periodically flush these in a

log-like fashion.  This lets the system optimize disk arm seeks and provide very high
write throughput even during shared workloads.  Thermal monitoring is also integrated,

and the system will proactively take itself offline if external temperatures rise and cause
blades to overheat.  The system is able to differentiate between power or thermal failures

and disk or blade failures so it can respond appropriately.

5. Conclusion

The ability of storage systems built on the Object Storage Architecture to scale capacity
and performance addresses a key requirement for HPC Linux clusters. Panasas’ Object-

based storage cluster demonstrates scalability with 32-shelf systems providing 30x the
bandwidth of a single shelf, and 30 shelf NAS benchmarks providing 6x the throughput

of 5-shelf runs of the same benchmark.

While we want performance and capacity to grow linearly as resources are added to a
storage cluster, we do not want administrator effort to grow anywhere near linearly.

Object Storage Architectures are designed to abstract physical limitations, making
virtualization easier to provide, so that larger systems can be managed with little more

effort than small systems.  Panasas object-based storage clusters use distributed
intelligence, a single namespace interface, file-level striping and RAID, and transparent

rebalancing to realize the manageability advantages of Object-based Storage.
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Abstract

Permabit is a software company that makes a storage clustering product called
Permeon. Permeon grew out of the need to reconcile a vision of the future of globally
distributed, secure, private and robust storage with near-term marketplace realities.
This paper discusses the evolution of the ideas embodied in Permeon.

1 Introduction

When Permabit was founded in June of 2000, it was directed towards making the “disk
in the sky” Storage Service Provider (SSP) idea practical. Storage clients would send
permanent data off into the network, with the guarantee that this data would be kept safe
and private. Most of our initial concerns were interface issues between the storage client
and the storage system, and were largely independent of the structure and implementation
of the actual storage. It was only later that we focused on distributed storage clustering
software.

2 Content Addressed Storage (CAS)

To make remote network storage immediately practical for ordinary users, we had to first
address the issue of the availability and cost of bandwidth. We observed that if a crypto-
graphic hash of a block of data is used as the name for the block, then users of a widely
shared Internet storage system should be able to backup much of the data on their PC’s to
a “disk in the sky” without sending much data. Not only could they avoid transmitting data
that the storage system has seen before, but we could also avoid storing it separately for
each user. This could make it practical for a large number of users to store large amounts
of data remotely, enabling data sharing and remote access to their data.
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Deposit object version (client-named)

Extend version retention (server enforced)

List an object’s versions (specified time range)

Read from object version (access is controlled)

Delete object version (if allowed)

SSNAP…

Figure 1: Content addressed storage (CAS) can save valuable bandwidth on the WAN,
reduce storage requirements, and guard data integrity. In Permabit CAS, a cryptographic
hash fingerprint of each data block is used as the address of that block, enabling storage
sharing. An unshared metadata-level, analogous to the inode level in Unix, controls access
and security. A secure network protocol (SSNAP) maintains privacy and thwarts IP-piracy.

2.1 Self-Encryption

CAS bandwidth and storage savings depend on sharing storage between unrelated users.
This seems to require that the storage providers have complete access to all of the data.
This is something that is unlikely to be palatable to the end user for privacy reasons, and is
also a significant potential source of liability to the storage provider.

This issue can be dealt with using self-encryption: each block of data stored can first be
encrypted using a key derived deterministically from the unencrypted block (again using a
cryptographic hash). Unrelated users will produce the same encrypted block, but no one
without the source block can determine the key. As long as keys are never stored “in the
clear” in the storage system, no one who has not had access to an unencrypted copy of the
block can determine what it contains. The Farsite project[1] uses a similar idea, but only to
save storage, not network bandwidth of the depositor.

2.2 Access Control

If knowing the hash of a block is a sufficient credential for being granted access to the
block, the storage system has no real access control. For example, in a widely shared “disk
in the sky” storage system, the hash corresponding to the contents of a newly released DVD
might become widely broadcast. The storage provider needs a way to obey a court-order
to remove illegitimate access to this content without removing legitimate access.

It is natural, for this reason, to introduce a metadata level which is analogous to the
inode level in a Unix file system, as is illustrated in Figure 1. A small amount of unshared
per-client and per-object metadata allows conventional access control and provides a place
to keep privately-encrypted key information. Only the block-level is globally shared and
self-encrypted. Blocks can only be read by reference to unshared per-client metadata.
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2.3 Network Protocol

The SSNAP network protocol for communicating with the “disk in the sky” is summarized
in Figure 1. Hash-named blocks of data can be deposited by name to save bandwidth,
but they can only be read as part of an object which belongs to a particular client (to
permit read-access control). Depositing blocks by hash-name may involve a per-client
challenge, to ensure that the client actually has the block and not just a hash that someone
has broadcast to them.

Objects are analogous to inodes in a Unix file system, except that the object handle
(inode number) is supplied by the client. Both block names and handles are 32 bytes long.
Objects can have multiple historical versions, allowing retention policies for protecting
history to be enforced by the storage system. This is used to protect against accidental or
malicious corruption. Server enforced record retention is also useful for automating record
retention requirements mandated by government regulations and business best practices.

2.4 Security and Privacy

No attempt is made to anonymize user access. Privacy maintenance is based on not storing
records that allow a stored object to be linked to a user when the object is not actually being
accessed. Depending upon accounting requirements, whatever information is desired can
be logged or not logged at access time. By not recording who owns what data, storage
service providers can avoid having these (non-existent) records subpoenaed.

The globally unique name of an object is obtained by combining a namespace identi-
fier with the handle constructed by the client—which the client ensures is unique within
the namespace and unguessable. The handle and namespace are combined by the storage
system using a one-way hash function to locate the object. To prevent objects that are not
being accessed from being linked to users, handles are not retained by the storage system.

2.5 Embedding File Systems

SSNAP provides an object level interface at the equivalent of the Unix inode level. Client
libraries build upon this, to support file sharing protocols with directories. A generalized
Portable Hierarchical File System (PHFS) data format is defined, with an associated API,
which allows file system metadata for different file systems to be embedded. Multiple
historical versions of files are supported, to allow convenient file system snapshotting for
backup purposes. File system snapshots can be copied into Permabit storage and presented
through familiar file sharing protocols. Permabit storage can also be used directly for live
file storage, with copy-on-write snapshotting providing backup. By breaking files up into
hash-named blocks at natural boundaries (e.g., email attachment boundaries), the likelihood
of storage sharing (block coalescence) is enhanced.

2.6 Enterprise Storage

Although SSNAP and PHFS were originally conceived with end-users in mind, most of the
considerations that went into their design are at least as important for enterprises. Divisions
within an enterprise would like to be able to share storage without compromising their

449



tape

disk
disk

tape

bulk
disk

STORAGESTORAGESTORAGESTORAGE

POOLPOOLPOOLPOOL
clique

storage

clique

storage

clique

storage

wide area network

Figure 2: Distributed storage systems can displace tape as safe and economical long-
term/large-scale storage. Geographically distributed storage cliques can protect redundant
records from loss or corruption, and independently enforce record retention policies.

privacy or security. Storage-system enforced data retention is important in this context not
only for preserving backup snapshots of a file system, but also for meeting government
regulatory mandates for the long-term retention of email and other sensitive records.

The elimination of common storage is particularly interesting for enterprises. The Venti
project at Lucent Bell Labs[2] showed that, with the combination of avoiding duplication
of common blocks of data and compressing the blocks, all of the daily backup data for each
of two large shared file systems accumulated over a decade could be stored on disk using
only slighly more storage than the current active data on the file systems.

3 Distributed Storage

The considerations discussed above apply regardless of the nature of the “disk in the sky.”
Since hash-named data is a natural match for scalable clustered storage, and stimulated by
the low cost of ATA disks and commodity PC’s, we decided to develop our own storage
clustering software.

3.1 Bulk Storage

Storage systems are naturally hierarchical. For example, RAM memory systems use slower
but more economical memory for bulk storage, while caching the most active data to hide
most of the latency. With the raw media cost per gigabyte of ATA disks below that of tape,
it seems natural to expect that the bulk of storage will soon be low-cost disk storage, used
within a storage hierarchy (Figure 2). But low cost does not mean just cheap disks. Most of
the cost of disk storage today is in its management: adding and removing storage, keeping
it working, backing it up and preparing for disaster recovery. Bulk disk storage needs to
be self-managing, self-healing, self-backing and disaster tolerant in order to qualify as low
cost storage.

To be disaster tolerant, the bulk disk storage must be distributed: information destroyed
at one location must be redundantly represented elsewhere. In considering costs, however,
it is important to also keep bandwidth in mind. The cost of bandwidth on the WAN is sev-
eral orders of magnitude greater than the cost of bandwidth on a local network. This makes
a two level system attractive, in which local clustering of economical standard hardware
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constitutes the first level. In the Permeon system the local cluster provides fast recovery
after failure of a server, fast access for nearby clients, high aggregate disk and network
bandwidth, and cooperative caching behavior.

3.2 Scalability

Overlay network routing schemes developed for academic distributed storage systems de-
pend on statistical allocation of storage capacity. This does not work well for small clusters.
Permeon cliques are designed to scale up indefinitely starting from a very small number of
servers, allowing a low-cost entry point. For this reason, a table-based routing scheme
is used within cliques, in which address ranges for hash-named data (and replicas) are
assigned and reassigned as servers are added or removed. Data replicas are created and
moved automatically as address assignments change.

Because of high WAN bandwidth costs, if a clique is destroyed there is a large benefit in
being able to recreate it using data resident at one or a small number of locations. This leads
to a multi-clique scheme in which the data from each clique is redundantly represented at
some small set of other cliques.

3.3 Portals

To provide convenient access to the distributed storage system, Permeon provides portal
servers which present the clique storage using familiar file sharing protocols. These portals
can live behind firewalls, providing secure access to shared storage cliques. A web-based
storage management console runs on the portals.

4 Conclusions

The distributed “disk in the sky” storage systems of the future will be the descendents
of decentralized bulk-disk storage of the post-magnetic-tape era which make storage in-
expensive by solving the costly storage management, repair, data corruption and disaster
tolerance problems. In particular, these storage systems will have to enforce data-retention
policies, and do so independently in different locations, in order to provide useful backup
and dependable archiving. Systems which save bandwidth and storage space by avoiding
transmitting or storing duplicate data have a distinct advantage in the near term. Privacy
and security provisions are already important today, and will be vital to making the systems
suitable for widely shared access.
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